--- license: apache-2.0 base_model: google/flat-ul2 pipeline_tag: feature-extraction tags: - embedding - text embedding --- # flan-ul2-text-encoder The encoder model extracted from [flan-ul2](https://huggingface.co./google/flan-ul2) via a new class add [in a recent release](https://github.com/huggingface/transformers/releases/tag/v4.31.0). ⚠️ This model is 17.44 GB in `bfloat16` precision ⚠️ ## basic usage ```python from transformers import AutoTokenizer, AutoModelForTextEncoding tokenizer = AutoTokenizer.from_pretrained("pszemraj/flan-ul2-text-encoder") model = AutoModelForTextEncoding.from_pretrained("pszemraj/flan-ul2-text-encoder") inputs = tokenizer("Hello, my dog loves memes", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` ## usage: semantic similarity > note: this is 'one way' to use the encoder, not 'the only way'. suggestions and ideas welcome. Below is an example and a set of functions to compute the cosine similarity between the embeddings of different texts with this model ## Functions ### load_model_and_tokenizer Loads the model and tokenizer based on `model_name`, returning a tuple containing the loaded model and tokenizer.
Details ```python from typing import List, Tuple import torch from transformers import AutoModel, AutoTokenizer from transformers import AutoModelForTextEncoding def load_model_and_tokenizer(model_name: str) -> Tuple[AutoModel, AutoTokenizer]: """ Load the model and tokenizer based on the given model name. Args: model_name (str): The name of the model to be loaded. Returns: Tuple[AutoModelForTextEncoding, AutoTokenizer]: The loaded model and tokenizer. """ model = AutoModelForTextEncoding.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto" ).eval() tokenizer = AutoTokenizer.from_pretrained(model_name) return model, tokenizer ```
### get_embeddings This computes the embeddings for the given texts given the model and tokenizer via weighted mean pooling across seq_len (as in [SGPT](https://github.com/Muennighoff/sgpt#symmetric-semantic-search-be))
Details ```python def get_embeddings( model: AutoModel, tokenizer: AutoTokenizer, texts: List[str] ) -> torch.Tensor: """ compute text embeddings via weighted mean pooling across seq_len Args: model (AutoModel): The model to be used for getting embeddings. tokenizer (AutoTokenizer): The tokenizer to be used for tokenizing the texts. texts (List[str]): The texts for which embeddings are to be calculated. Returns: torch.Tensor: The calculated embeddings. """ # Tokenize input texts batch_tokens = tokenizer(texts, padding=True, truncation=True, return_tensors="pt") # Get the embeddings with torch.no_grad(): last_hidden_state = model( **batch_tokens, output_hidden_states=True, return_dict=True ).last_hidden_state # Get weights weights = ( torch.arange(start=1, end=last_hidden_state.shape[1] + 1) .unsqueeze(0) .unsqueeze(-1) .expand(last_hidden_state.size()) .float() .to(last_hidden_state.device) ) # Get attn mask input_mask_expanded = ( batch_tokens["attention_mask"] .unsqueeze(-1) .expand(last_hidden_state.size()) .float() ) # Perform weighted mean pooling across seq_len: bs, seq_len, hidden_dim -> bs, hidden_dim sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded * weights, dim=1) sum_mask = torch.sum(input_mask_expanded * weights, dim=1) embeddings = sum_embeddings / sum_mask return embeddings ```
### calculate_cosine_similarity Helper fn to compute and print out cosine similarity
click to expand ```python from scipy.spatial.distance import cosine def calculate_cosine_similarity(embeddings: torch.Tensor, texts: List[str]) -> None: """compute and print the cosine sim between the first text and all others""" # Calculate cosine similarities for i in range(1, len(embeddings)): cosine_sim = 1 - cosine(embeddings[0], embeddings[i]) print( 'Cosine similarity between "%s" and "%s" is: %.3f' % (texts[0], texts[i], cosine_sim) ) ```
## Usage Install packages: ```bash pip install transformers accelerate sentencepiece scipy ``` Then, you can use the functions to compute embeddings and similarity scores: ```python model_name = "pszemraj/flan-ul2-text-encoder" model, tokenizer = load_model_and_tokenizer(model_name) texts = [ "deep learning", "artificial intelligence", "deep diving", "artificial snow", ] embeddings = get_embeddings(model, tokenizer, texts) calculate_cosine_similarity(embeddings, texts) ``` This will print the cosine similarity between the first text and all other texts in the `texts' list. ## References Inference with this model/the example is based on the ideas and examples in the [SGPT repository](https://github.com/Muennighoff/sgpt#symmetric-semantic-search-be). ``` @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```