File size: 1,807 Bytes
a3d76e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-base-fleece2instructions-r1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-base-fleece2instructions-r1

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co./google/flan-t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0642
- Rouge1: 58.9516
- Rouge2: 41.8006
- Rougel: 56.8249
- Rougelsum: 56.9171
- Gen Len: 13.1493

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 2.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.1939        | 1.0   | 362  | 1.0822          | 58.1758 | 40.9388 | 56.1219 | 56.2464   | 13.2592 |
| 1.1667        | 2.0   | 724  | 1.0642          | 58.9516 | 41.8006 | 56.8249 | 56.9171   | 13.1493 |


### Framework versions

- Transformers 4.28.0.dev0
- Pytorch 2.0.0.dev20230212+cu118
- Datasets 2.9.0
- Tokenizers 0.13.2