--- license: - apache-2.0 - cc-by-nc-4.0 datasets: pszemraj/fleece2instructions-codealpaca tags: - generated_from_trainer - instruct - instructions - code - instructiongen metrics: - rouge language: - en widget: - text: | git lfs install huggingface-cli lfs-enable-largefiles . git lfs track "*.bin" git add . git commit -a -m "add fp32 chkpt" git push example_title: bash - text: | export interface DocumentParams { pageContent: string; // eslint-disable-next-line @typescript-eslint/no-explicit-any metadata: Record; } /** * Interface for interacting with a document. */ export class Document implements DocumentParams { pageContent: string; // eslint-disable-next-line @typescript-eslint/no-explicit-any metadata: Record; constructor(fields?: Partial) { this.pageContent = fields?.pageContent ?? this.pageContent; this.metadata = fields?.metadata ?? {}; } } example_title: js - text: | def merge(left, right): if len(left) == 0: return right if len(right) == 0: return left result = [] index_left = index_right = 0 while len(result) < len(left) + len(right): if left[index_left] <= right[index_right]: result.append(left[index_left]) index_left += 1 else: result.append(right[index_right]) index_right += 1 if index_right == len(right): result += left[index_left:] break if index_left == len(left): result += right[index_right:] break return result example_title: merge - text: > import pandas as pd import plotly.graph_objects as go df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_apple_stock.csv') fig = go.Figure(go.Scatter(x = df['AAPL_x'], y = df['AAPL_y'], name='Share Prices (in USD)')) fig.update_layout(title='Apple Share Prices over time (2014)', plot_bgcolor='rgb(230, 230,230)', showlegend=True) fig.show() example_title: plot - text: | from spellchecker import SpellChecker spell = SpellChecker() def check_word_spelling(word: str): misspelled = spell.unknown([word]) return len(misspelled) == 0 def eval_and_replace(text: str, match_token: str = "- "): if match_token not in text: return text else: while True: full_before_text = text.split(match_token, maxsplit=1)[0] before_text = [ char for char in full_before_text.split()[-1] if char.isalpha() ] before_text = "".join(before_text) full_after_text = text.split(match_token, maxsplit=1)[-1] after_text = [char for char in full_after_text.split()[0] if char.isalpha()] after_text = "".join(after_text) full_text = before_text + after_text if check_word_spelling(full_text): text = full_before_text + full_after_text else: text = full_before_text + " " + full_after_text if match_token not in text: break return text text = "I- am- a go- od- boy" eval_and_replace(text) example_title: spell check - text: > import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification checkpoint = "distilbert-base-uncased-finetuned-sst-2-english" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSequenceClassification.from_pretrained(checkpoint) sequences = ["I've been waiting for a HuggingFace course my whole life.", "So have I!"] tokens = tokenizer(sequences, padding=True, truncation=True, return_tensors="pt") output = model(**tokens) example_title: model inference inference: parameters: max_length: 96 num_beams: 4 --- # bart-large-code-instructiongen Use this text2text model to find out what LLM instructions might be able to generate an arbitary piece of code! - Check out a [basic demo on Spaces](https://huggingface.co./spaces/pszemraj/generate-instructions) - An example of how to use instructiongen models in a CLI script can be found [here](https://gist.github.com/pszemraj/8b0213e700763106074d3ac15d041c14) - You can find other models fine-tuned for instruction generation by [searching for the instructiongen tag](https://huggingface.co./models?other=instructiongen) ## about This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co./facebook/bart-large) on the `pszemraj/fleece2instructions-codealpaca` dataset. It achieves the following results on the evaluation set: - Loss: 0.9222 - Rouge1: 62.0692 - Rouge2: 36.1947 - Rougel: 57.5128 - Rougelsum: 58.6613 - Gen Len: 31.0060 ## Intended uses & limitations 🚨 **note:** as the authors elected to release the [original dataset](https://github.com/sahil280114/codealpaca) under `cc-by-nc`, the license carries over to this model and **cannot be used for commercial activity**. Intended use: Research on domain adaptation and/or other improvements to LLMs by extending instruction:text data pairs. ## Training and evaluation data Refer to the linked dataset card for `pszemraj/fleece2instructions-codealpaca` or the [original dataset](https://github.com/sahil280114/codealpaca) repo. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.0914 | 1.0 | 563 | 1.0303 | 60.288 | 34.1884 | 55.9293 | 57.0714 | 30.6267 | | 0.8688 | 2.0 | 1126 | 0.9333 | 61.0409 | 34.9823 | 56.4887 | 57.6662 | 31.7255 | | 0.6773 | 3.0 | 1689 | 0.9222 | 62.0692 | 36.1947 | 57.5128 | 58.6613 | 31.0060 |