File size: 6,633 Bytes
d062970 eb06f7b c68da8b eb06f7b 9c81128 c68da8b c1072da c68da8b c1072da c68da8b c1072da c68da8b c1072da c68da8b eb17ecb c68da8b d73accc f49971f d73accc d062970 eb06f7b 647cc20 271d302 eb06f7b 271d302 eb06f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
---
license:
- apache-2.0
- cc-by-nc-4.0
datasets: pszemraj/fleece2instructions-codealpaca
tags:
- generated_from_trainer
- instruct
- instructions
- code
- instructiongen
metrics:
- rouge
language:
- en
widget:
- text: |
git lfs install
huggingface-cli lfs-enable-largefiles .
git lfs track "*.bin"
git add .
git commit -a -m "add fp32 chkpt"
git push
example_title: bash
- text: |
export interface DocumentParams {
pageContent: string;
// eslint-disable-next-line @typescript-eslint/no-explicit-any
metadata: Record<string, any>;
}
/**
* Interface for interacting with a document.
*/
export class Document implements DocumentParams {
pageContent: string;
// eslint-disable-next-line @typescript-eslint/no-explicit-any
metadata: Record<string, any>;
constructor(fields?: Partial<DocumentParams>) {
this.pageContent = fields?.pageContent ?? this.pageContent;
this.metadata = fields?.metadata ?? {};
}
}
example_title: js
- text: |
def merge(left, right):
if len(left) == 0:
return right
if len(right) == 0:
return left
result = []
index_left = index_right = 0
while len(result) < len(left) + len(right):
if left[index_left] <= right[index_right]:
result.append(left[index_left])
index_left += 1
else:
result.append(right[index_right])
index_right += 1
if index_right == len(right):
result += left[index_left:]
break
if index_left == len(left):
result += right[index_right:]
break
return result
example_title: merge
- text: >
import pandas as pd
import plotly.graph_objects as go
df =
pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_apple_stock.csv')
fig = go.Figure(go.Scatter(x = df['AAPL_x'], y = df['AAPL_y'],
name='Share Prices (in USD)'))
fig.update_layout(title='Apple Share Prices over time (2014)',
plot_bgcolor='rgb(230, 230,230)',
showlegend=True)
fig.show()
example_title: plot
- text: |
from spellchecker import SpellChecker
spell = SpellChecker()
def check_word_spelling(word: str):
misspelled = spell.unknown([word])
return len(misspelled) == 0
def eval_and_replace(text: str, match_token: str = "- "):
if match_token not in text:
return text
else:
while True:
full_before_text = text.split(match_token, maxsplit=1)[0]
before_text = [
char for char in full_before_text.split()[-1] if char.isalpha()
]
before_text = "".join(before_text)
full_after_text = text.split(match_token, maxsplit=1)[-1]
after_text = [char for char in full_after_text.split()[0] if char.isalpha()]
after_text = "".join(after_text)
full_text = before_text + after_text
if check_word_spelling(full_text):
text = full_before_text + full_after_text
else:
text = full_before_text + " " + full_after_text
if match_token not in text:
break
return text
text = "I- am- a go- od- boy"
eval_and_replace(text)
example_title: spell check
- text: >
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
sequences = ["I've been waiting for a HuggingFace course my whole life.",
"So have I!"]
tokens = tokenizer(sequences, padding=True, truncation=True,
return_tensors="pt")
output = model(**tokens)
example_title: model inference
inference:
parameters:
max_length: 96
num_beams: 4
---
# bart-large-code-instructiongen
Use this text2text model to find out what LLM instructions might be able to generate an arbitary piece of code!
- Check out a [basic demo on Spaces](https://huggingface.co./spaces/pszemraj/generate-instructions)
- An example of how to use instructiongen models in a CLI script can be found [here](https://gist.github.com/pszemraj/8b0213e700763106074d3ac15d041c14)
- You can find other models fine-tuned for instruction generation by [searching for the instructiongen tag](https://huggingface.co./models?other=instructiongen)
## about
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co./facebook/bart-large) on the `pszemraj/fleece2instructions-codealpaca` dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9222
- Rouge1: 62.0692
- Rouge2: 36.1947
- Rougel: 57.5128
- Rougelsum: 58.6613
- Gen Len: 31.0060
## Intended uses & limitations
🚨 **note:** as the authors elected to release the [original dataset](https://github.com/sahil280114/codealpaca) under `cc-by-nc`, the license carries over to this model and **cannot be used for commercial activity**.
Intended use: Research on domain adaptation and/or other improvements to LLMs by extending instruction:text data pairs.
## Training and evaluation data
Refer to the linked dataset card for `pszemraj/fleece2instructions-codealpaca` or the [original dataset](https://github.com/sahil280114/codealpaca) repo.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.0914 | 1.0 | 563 | 1.0303 | 60.288 | 34.1884 | 55.9293 | 57.0714 | 30.6267 |
| 0.8688 | 2.0 | 1126 | 0.9333 | 61.0409 | 34.9823 | 56.4887 | 57.6662 | 31.7255 |
| 0.6773 | 3.0 | 1689 | 0.9222 | 62.0692 | 36.1947 | 57.5128 | 58.6613 | 31.0060 | |