pszemraj commited on
Commit
b476028
1 Parent(s): 31c8d92

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -11
README.md CHANGED
@@ -76,8 +76,18 @@ inference:
76
 
77
  # bart-base-instructiongen + LongForm
78
 
 
 
 
 
 
 
 
 
79
  This model is a fine-tuned version of [pszemraj/bart-base-instructiongen](https://huggingface.co/pszemraj/bart-base-instructiongen) on the `akoksal/LongForm` dataset.
80
 
 
 
81
  ## Training procedure
82
 
83
  ### Training hyperparameters
@@ -94,14 +104,3 @@ The following hyperparameters were used during training:
94
  - lr_scheduler_type: cosine
95
  - lr_scheduler_warmup_ratio: 0.02
96
  - num_epochs: 3.0
97
-
98
- ### Training results
99
-
100
-
101
-
102
- ### Framework versions
103
-
104
- - Transformers 4.29.0.dev0
105
- - Pytorch 2.0.1+cu117
106
- - Datasets 2.12.0
107
- - Tokenizers 0.13.3
 
76
 
77
  # bart-base-instructiongen + LongForm
78
 
79
+ Instead of generating questions from text, generate instructions for LLMs!
80
+
81
+ - Check out a [basic demo on Spaces](https://huggingface.co/spaces/pszemraj/generate-instructions)
82
+ - An example of how to use instructiongen models in a CLI script can be found [here](https://gist.github.com/pszemraj/8b0213e700763106074d3ac15d041c14)
83
+ - You can find other models fine-tuned for instruction generation by [searching for the instructiongen tag](https://huggingface.co/models?other=instructiongen).
84
+
85
+ ## about
86
+
87
  This model is a fine-tuned version of [pszemraj/bart-base-instructiongen](https://huggingface.co/pszemraj/bart-base-instructiongen) on the `akoksal/LongForm` dataset.
88
 
89
+ This was trained on a dataset of **only** instructions+outputs, with any `inputs` filtered out. This means that text of *1) cookies and cream 2) chocolate chip 3) mint chip 4) oreo* will **not** get you *"Rank the following ice cream flavors: oreo, mint chip, chocolate chip, cookies and cream"*.
90
+
91
  ## Training procedure
92
 
93
  ### Training hyperparameters
 
104
  - lr_scheduler_type: cosine
105
  - lr_scheduler_warmup_ratio: 0.02
106
  - num_epochs: 3.0