pszemraj commited on
Commit
c01b227
1 Parent(s): 0a10ac1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -22
README.md CHANGED
@@ -1,12 +1,115 @@
1
  ---
2
- license: apache-2.0
 
 
 
3
  tags:
4
- - generated_from_trainer
 
 
 
5
  metrics:
6
- - rouge
7
- model-index:
8
- - name: bart-base-code-instructiongen
9
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  inference:
11
  parameters:
12
  max_length: 128
@@ -14,11 +117,11 @@ inference:
14
 
15
  ---
16
 
17
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
- should probably proofread and complete it, then remove this comment. -->
19
 
20
  # bart-base-code-instructiongen
21
 
 
 
22
  This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the `pszemraj/fleece2instructions-codealpaca` dataset.
23
  It achieves the following results on the evaluation set:
24
  - Loss: 1.0136
@@ -28,17 +131,15 @@ It achieves the following results on the evaluation set:
28
  - Rougelsum: 56.9064
29
  - Gen Len: 29.7146
30
 
31
- ## Model description
32
-
33
- More information needed
34
-
35
  ## Intended uses & limitations
36
 
37
- More information needed
 
 
38
 
39
  ## Training and evaluation data
40
 
41
- Refer to `pszemraj/fleece2instructions-codealpaca`
42
 
43
  ## Training procedure
44
 
@@ -64,11 +165,3 @@ The following hyperparameters were used during training:
64
  | 1.1165 | 1.0 | 281 | 1.1090 | 57.9239 | 31.9259 | 53.8737 | 54.9811 | 28.2924 |
65
  | 1.0763 | 2.0 | 563 | 1.0267 | 59.9605 | 34.0298 | 55.7523 | 56.8021 | 29.6966 |
66
  | 0.9595 | 2.99 | 843 | 1.0136 | 59.9513 | 33.9118 | 55.7815 | 56.9064 | 29.7146 |
67
-
68
-
69
- ### Framework versions
70
-
71
- - Transformers 4.28.0.dev0
72
- - Pytorch 2.0.0.dev20230212+cu118
73
- - Datasets 2.9.0
74
- - Tokenizers 0.13.2
 
1
  ---
2
+ license:
3
+ - apache-2.0
4
+ - cc-by-nc-4.0
5
+ datasets: pszemraj/fleece2instructions-codealpaca
6
  tags:
7
+ - generated_from_trainer
8
+ - instruct
9
+ - instructions
10
+ - code
11
  metrics:
12
+ - rouge
13
+ language:
14
+ - en
15
+ widget:
16
+ - text: >
17
+ import torch
18
+
19
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
20
+
21
+
22
+ checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
23
+
24
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
25
+
26
+ model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
27
+
28
+ sequences = ["I've been waiting for a HuggingFace course my whole life.",
29
+ "So have I!"]
30
+
31
+
32
+ tokens = tokenizer(sequences, padding=True, truncation=True,
33
+ return_tensors="pt")
34
+
35
+ output = model(**tokens)
36
+ example_title: Example One
37
+ - text: >
38
+ import torch
39
+
40
+ from tqdm.auto import tqdm
41
+
42
+
43
+ device = torch.device("cuda") if torch.cuda.is_available() else
44
+ torch.device("cpu")
45
+
46
+ model.to(device)
47
+
48
+
49
+ progress_bar = tqdm(range(num_training_steps))
50
+
51
+
52
+ model.train()
53
+
54
+ for epoch in range(num_epochs):
55
+ for batch in train_dataloader:
56
+ batch = {k: v.to(device) for k, v in batch.items()}
57
+ outputs = model(**batch)
58
+ loss = outputs.loss
59
+ loss.backward()
60
+
61
+ optimizer.step()
62
+ lr_scheduler.step()
63
+ optimizer.zero_grad()
64
+ progress_bar.update(1)
65
+ example_title: Example Two
66
+ - text: |
67
+ import evaluate
68
+
69
+ metric = evaluate.load("glue", "mrpc")
70
+ model.eval()
71
+ for batch in eval_dataloader:
72
+ batch = {k: v.to(device) for k, v in batch.items()}
73
+ with torch.no_grad():
74
+ outputs = model(**batch)
75
+
76
+ logits = outputs.logits
77
+ predictions = torch.argmax(logits, dim=-1)
78
+ metric.add_batch(predictions=predictions, references=batch["labels"])
79
+
80
+ metric.compute()
81
+ example_title: Example Three
82
+ - text: |
83
+ git lfs install
84
+ huggingface-cli lfs-enable-largefiles .
85
+ git lfs track "*.bin"
86
+ git add .
87
+ git commit -a -m "add fp32 chkpt"
88
+ git push
89
+ example_title: Example Four
90
+ - text: |
91
+ export interface DocumentParams {
92
+ pageContent: string;
93
+
94
+ // eslint-disable-next-line @typescript-eslint/no-explicit-any
95
+ metadata: Record<string, any>;
96
+ }
97
+
98
+ /**
99
+ * Interface for interacting with a document.
100
+ */
101
+ export class Document implements DocumentParams {
102
+ pageContent: string;
103
+
104
+ // eslint-disable-next-line @typescript-eslint/no-explicit-any
105
+ metadata: Record<string, any>;
106
+
107
+ constructor(fields?: Partial<DocumentParams>) {
108
+ this.pageContent = fields?.pageContent ?? this.pageContent;
109
+ this.metadata = fields?.metadata ?? {};
110
+ }
111
+ }
112
+ example_title: Example Five
113
  inference:
114
  parameters:
115
  max_length: 128
 
117
 
118
  ---
119
 
 
 
120
 
121
  # bart-base-code-instructiongen
122
 
123
+ Use this text2text model to find out what LLM instructions might be able to generate an arbitary piece of code!
124
+
125
  This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the `pszemraj/fleece2instructions-codealpaca` dataset.
126
  It achieves the following results on the evaluation set:
127
  - Loss: 1.0136
 
131
  - Rougelsum: 56.9064
132
  - Gen Len: 29.7146
133
 
 
 
 
 
134
  ## Intended uses & limitations
135
 
136
+ 🚨 **note:** as the authors elected to release the [original dataset](https://github.com/sahil280114/codealpaca) under `cc-by-nc`, the license carries over to this model and **cannot be used for commercial activity**.
137
+
138
+ Intended use: Research on domain adaptation and/or other improvements to LLMs by extending instruction:text data pairs.
139
 
140
  ## Training and evaluation data
141
 
142
+ Refer to the linked dataset card for `pszemraj/fleece2instructions-codealpaca` or the [original dataset](https://github.com/sahil280114/codealpaca) repo.
143
 
144
  ## Training procedure
145
 
 
165
  | 1.1165 | 1.0 | 281 | 1.1090 | 57.9239 | 31.9259 | 53.8737 | 54.9811 | 28.2924 |
166
  | 1.0763 | 2.0 | 563 | 1.0267 | 59.9605 | 34.0298 | 55.7523 | 56.8021 | 29.6966 |
167
  | 0.9595 | 2.99 | 843 | 1.0136 | 59.9513 | 33.9118 | 55.7815 | 56.9064 | 29.7146 |