asofter commited on
Commit
7821abf
·
1 Parent(s): 74035d6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ inference: false
5
+ pipeline_tag: token-classification
6
+ tags:
7
+ - toxicity
8
+ - bias
9
+ - roberta
10
+ license: apache-2.0
11
+ ---
12
+
13
+ # ONNX version of unitary/unbiased-toxic-roberta
14
+
15
+ **This model is a conversion of [unitary/unbiased-toxic-roberta](https://huggingface.co/unitary/unbiased-toxic-roberta) to ONNX** format using the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library.
16
+
17
+ Trained models & code to predict toxic comments on 3 Jigsaw challenges: Toxic comment classification, Unintended Bias in Toxic comments, Multilingual toxic comment classification.
18
+
19
+ Built by [Laura Hanu](https://laurahanu.github.io/) at [Unitary](https://www.unitary.ai/).
20
+
21
+ **⚠️ Disclaimer:**
22
+ The huggingface models currently give different results to the detoxify library (see issue [here](https://github.com/unitaryai/detoxify/issues/15)).
23
+
24
+ ## Labels
25
+ All challenges have a toxicity label. The toxicity labels represent the aggregate ratings of up to 10 annotators according the following schema:
26
+ - **Very Toxic** (a very hateful, aggressive, or disrespectful comment that is very likely to make you leave a discussion or give up on sharing your perspective)
27
+ - **Toxic** (a rude, disrespectful, or unreasonable comment that is somewhat likely to make you leave a discussion or give up on sharing your perspective)
28
+ - **Hard to Say**
29
+ - **Not Toxic**
30
+
31
+ More information about the labelling schema can be found [here](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data).
32
+
33
+ ### Toxic Comment Classification Challenge
34
+ This challenge includes the following labels:
35
+
36
+ - `toxic`
37
+ - `severe_toxic`
38
+ - `obscene`
39
+ - `threat`
40
+ - `insult`
41
+ - `identity_hate`
42
+
43
+ ### Jigsaw Unintended Bias in Toxicity Classification
44
+ This challenge has 2 types of labels: the main toxicity labels and some additional identity labels that represent the identities mentioned in the comments.
45
+
46
+ Only identities with more than 500 examples in the test set (combined public and private) are included during training as additional labels and in the evaluation calculation.
47
+
48
+ - `toxicity`
49
+ - `severe_toxicity`
50
+ - `obscene`
51
+ - `threat`
52
+ - `insult`
53
+ - `identity_attack`
54
+ - `sexual_explicit`
55
+
56
+ Identity labels used:
57
+ - `male`
58
+ - `female`
59
+ - `homosexual_gay_or_lesbian`
60
+ - `christian`
61
+ - `jewish`
62
+ - `muslim`
63
+ - `black`
64
+ - `white`
65
+ - `psychiatric_or_mental_illness`
66
+
67
+ A complete list of all the identity labels available can be found [here](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data).
68
+
69
+ ## Usage
70
+
71
+ Loading the model requires the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library installed.
72
+
73
+ ```python
74
+ from optimum.onnxruntime import ORTModelForSequenceClassification
75
+ from transformers import AutoTokenizer, pipeline
76
+
77
+
78
+ tokenizer = AutoTokenizer.from_pretrained("laiyer/unbiased-toxic-roberta-onnx")
79
+ model = ORTModelForSequenceClassification.from_pretrained("laiyer/unbiased-toxic-roberta-onnx")
80
+ classifier = pipeline(
81
+ task="text-classification",
82
+ model=model,
83
+ tokenizer=tokenizer,
84
+ )
85
+
86
+ classifier_output = ner("It's not toxic comment")
87
+ print(classifier_output)
88
+ ```