--- language: - en license: mit tags: - NLI - deberta-v3 datasets: - mnli - facebook/anli - fever - wanli - ling - amazonpolarity - imdb - appreviews inference: false pipeline_tag: zero-shot-classification base_model: MoritzLaurer/deberta-v3-base-zeroshot-v1 --- # ONNX version of MoritzLaurer/deberta-v3-base-zeroshot-v1 **This model is a conversion of [MoritzLaurer/deberta-v3-base-zeroshot-v1](https://huggingface.co./MoritzLaurer/deberta-v3-base-zeroshot-v1) to ONNX** format using the [🤗 Optimum](https://huggingface.co./docs/optimum/index) library. `MoritzLaurer/deberta-v3-large-zeroshot-v1` is designed for zero-shot classification, capable of determining whether a hypothesis is `true` or `not_true` based on a text, a format based on Natural Language Inference (NLI). ## Usage Loading the model requires the [🤗 Optimum](https://huggingface.co./docs/optimum/index) library installed. ```python from optimum.onnxruntime import ORTModelForSequenceClassification from transformers import AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("laiyer/deberta-v3-base-zeroshot-v1-onnx") model = ORTModelForSequenceClassification.from_pretrained("laiyer/deberta-v3-base-zeroshot-v1-onnx") classifier = pipeline( task="zero-shot-classification", model=model, tokenizer=tokenizer, ) classifier_output = classifier("Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.", ["mobile", "website", "billing", "account access"]) print(classifier_output) ``` ### LLM Guard [Ban Topics scanner](https://llm-guard.com/input_scanners/ban_topics/) ## Community Join our Slack to give us feedback, connect with the maintainers and fellow users, ask questions, or engage in discussions about LLM security!