File size: 4,649 Bytes
ffbc945
a7be7f3
 
 
 
 
ffbc945
a7be7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d79206
a7be7f3
 
 
 
 
 
 
 
 
ffbc945
a7be7f3
 
 
046e7ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7be7f3
 
046e7ce
 
 
 
 
 
41cce32
046e7ce
 
 
 
 
806442c
046e7ce
 
 
 
 
 
 
 
 
a7be7f3
 
046e7ce
aa38fbc
046e7ce
 
 
 
 
 
 
 
a7be7f3
 
 
 
0d79206
 
 
 
a7be7f3
 
 
046e7ce
 
 
 
 
 
a7be7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ace853
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---

language:

- ca

license: apache-2.0

tags:

- "catalan"

- "named entity recognition"

- "ner"

- "CaText"

- "Catalan Textual Corpus"

datasets:

- "projecte-aina/ancora-ca-ner"

metrics:

- f1

model-index:
- name: roberta-base-ca-v2-cased-ner
  results:
  - task: 
      type: token-classification 
    dataset:
      type:   projecte-aina/ancora-ca-ner
      name: Ancora-ca-NER
    metrics:
      - name: F1
        type: f1
        value: 0.8929
        
widget:

- text: "Em dic Lluïsa i visc a Santa Maria del Camí." 

- text: "L'Aina, la Berta i la Norma són molt amigues."

- text: "El Martí llegeix el Cavall Fort."

---

# Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Named Entity Recognition.

## Table of Contents
- [Model Description](#model-description)
- [Intended Uses and Limitations](#intended-uses-and-limitations)
- [How to Use](#how-to-use)
- [Training](#training)
  - [Training Data](#training-data)
  - [Training Procedure](#training-procedure)
- [Evaluation](#evaluation)
   - [Variable and Metrics](#variable-and-metrics)
   - [Evaluation Results](#evaluation-results)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Funding](#funding)
- [Contributions](#contributions)

## Model description

The **roberta-base-ca-v2-cased-ner** is a Named Entity Recognition (NER) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co./projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).

## Intended Uses and Limitations

**roberta-base-ca-v2-cased-ner** model can be used to recognize Named Entities in the provided text. The model is limited by its training dataset and may not generalize well for all use cases.

## How to Use

Here is how to use this model:

```python
from transformers import pipeline
from pprint import pprint

nlp = pipeline("ner", model="projecte-aina/roberta-base-ca-v2-cased-ner")
example = "Em dic Lluïsa i visc a Santa Maria del Camí."

ner_results = nlp(example)
pprint(ner_results)
```

## Training

### Training data
We used the NER dataset in Catalan called [Ancora-ca-NER](https://huggingface.co./datasets/projecte-aina/ancora-ca-ner) for training and evaluation.

### Training Procedure
The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.

## Evaluation

### Variable and Metrics

This model was finetuned maximizing F1 score.

### Evaluation results
We evaluated the _roberta-base-ca-v2-cased-ner_ on the Ancora-ca-ner test set against standard multilingual and monolingual baselines:

| Model        | Ancora-ca-ner (F1)| 
| ------------|:-------------|
| roberta-base-ca-v2-cased-ner | 89.29 |
| roberta-base-ca-cased-ner | **89.76** |
| mBERT       | 86.87 |
| XLM-RoBERTa | 86.31 |

For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).

## Licensing Information

[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)

## Citation Information 

If you use any of these resources (datasets or models) in your work, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
    title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
    author = "Armengol-Estap{\'e}, Jordi  and
      Carrino, Casimiro Pio  and
      Rodriguez-Penagos, Carlos  and
      de Gibert Bonet, Ona  and
      Armentano-Oller, Carme  and
      Gonzalez-Agirre, Aitor  and
      Melero, Maite  and
      Villegas, Marta",
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-acl.437",
    doi = "10.18653/v1/2021.findings-acl.437",
    pages = "4933--4946",
}
```

### Funding
This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).