Update README.md
Browse files
README.md
CHANGED
@@ -1,51 +1,72 @@
|
|
1 |
---
|
|
|
|
|
2 |
language:
|
|
|
3 |
- ca
|
4 |
-
|
5 |
license: apache-2.0
|
|
|
6 |
tags:
|
|
|
7 |
- "catalan"
|
|
|
8 |
- "semantic textual similarity"
|
|
|
9 |
- "sts-ca"
|
|
|
10 |
- "CaText"
|
|
|
11 |
- "Catalan Textual Corpus"
|
|
|
12 |
datasets:
|
13 |
-
|
|
|
|
|
14 |
metrics:
|
15 |
-
|
|
|
|
|
16 |
model-index:
|
|
|
17 |
- name: roberta-base-ca-cased-sts
|
18 |
results:
|
19 |
- task:
|
20 |
type: text-classification
|
21 |
dataset:
|
22 |
type: projecte-aina/sts-ca
|
23 |
-
name:
|
24 |
metrics:
|
25 |
-
-
|
26 |
-
|
|
|
27 |
|
28 |
---
|
29 |
|
30 |
-
# Catalan BERTa (
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
##
|
35 |
-
We used the STS dataset in Catalan called [STS-ca](https://huggingface.co/datasets/projecte-aina/sts-ca) for training and evaluation.
|
36 |
|
37 |
-
|
38 |
-
We evaluated the _roberta-base-ca-cased-sts_ on the STS-ca test set against standard multilingual and monolingual baselines:
|
39 |
|
40 |
-
|
41 |
-
|:------------|:----|
|
42 |
-
| roberta-base-ca-cased-sts | **79.73** |
|
43 |
-
| mBERT | 76.34 |
|
44 |
-
| XLM-RoBERTa | 75.40 |
|
45 |
-
| WikiBERT-ca | 77.18 |
|
46 |
|
47 |
-
|
48 |
-
For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
|
49 |
|
50 |
## How to use
|
51 |
To get the correct<sup>1</sup> model's prediction scores with values between 0.0 and 5.0, use the following code:
|
@@ -70,20 +91,50 @@ sentence_pairs = [("El llibre va caure per la finestra.", "El llibre va sortir v
|
|
70 |
|
71 |
predictions = pipe(prepare(sentence_pairs), add_special_tokens=False)
|
72 |
|
73 |
-
# convert back to scores to the original
|
74 |
for prediction in predictions:
|
75 |
prediction['score'] = logit(prediction['score'])
|
76 |
print(predictions)
|
77 |
```
|
78 |
Expected output:
|
79 |
```
|
80 |
-
[{'label': 'SIMILARITY', 'score': 2.
|
81 |
-
{'label': 'SIMILARITY', 'score': 2.
|
82 |
-
{'label': 'SIMILARITY', 'score':
|
83 |
```
|
84 |
|
85 |
<sup>1</sup> _**avoid using the widget** scores since they are normalized and do not reflect the original annotation values._
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
|
88 |
```bibtex
|
89 |
@inproceedings{armengol-estape-etal-2021-multilingual,
|
@@ -106,3 +157,10 @@ If you use any of these resources (datasets or models) in your work, please cite
|
|
106 |
pages = "4933--4946",
|
107 |
}
|
108 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: text-classification
|
3 |
+
|
4 |
language:
|
5 |
+
|
6 |
- ca
|
7 |
+
|
8 |
license: apache-2.0
|
9 |
+
|
10 |
tags:
|
11 |
+
|
12 |
- "catalan"
|
13 |
+
|
14 |
- "semantic textual similarity"
|
15 |
+
|
16 |
- "sts-ca"
|
17 |
+
|
18 |
- "CaText"
|
19 |
+
|
20 |
- "Catalan Textual Corpus"
|
21 |
+
|
22 |
datasets:
|
23 |
+
|
24 |
+
- "projecte-aina/sts-ca"
|
25 |
+
|
26 |
metrics:
|
27 |
+
|
28 |
+
- "combined_score"
|
29 |
+
|
30 |
model-index:
|
31 |
+
|
32 |
- name: roberta-base-ca-cased-sts
|
33 |
results:
|
34 |
- task:
|
35 |
type: text-classification
|
36 |
dataset:
|
37 |
type: projecte-aina/sts-ca
|
38 |
+
name: STS-ca
|
39 |
metrics:
|
40 |
+
- name: Pearson
|
41 |
+
type: Pearson
|
42 |
+
value: 0.797
|
43 |
|
44 |
---
|
45 |
|
46 |
+
# Catalan BERTa (roberta-base-ca) finetuned for Semantic Textual Similarity.
|
47 |
|
48 |
+
## Table of Contents
|
49 |
+
- [Model Description](#model-description)
|
50 |
+
- [Intended Uses and Limitations](#intended-uses-and-limitations)
|
51 |
+
- [How to Use](#how-to-use)
|
52 |
+
- [Training](#training)
|
53 |
+
- [Training Data](#training-data)
|
54 |
+
- [Training Procedure](#training-procedure)
|
55 |
+
- [Evaluation](#evaluation)
|
56 |
+
- [Variable and Metrics](#variable-and-metrics)
|
57 |
+
- [Evaluation Results](#evaluation-results)
|
58 |
+
- [Licensing Information](#licensing-information)
|
59 |
+
- [Citation Information](#citation-information)
|
60 |
+
- [Funding](#funding)
|
61 |
+
- [Contributions](#contributions)
|
62 |
|
63 |
+
## Model description
|
|
|
64 |
|
65 |
+
The **roberta-base-ca-cased-sts** is a Semantic Textual Similarity (STS) model for the Catalan language fine-tuned from the roberta-base-ca model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca model card for more details).
|
|
|
66 |
|
67 |
+
## Intended Uses and Limitations
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
**roberta-base-ca-cased-sts** model can be used to assess the similarity between two snippets of text. The model is limited by its training dataset and may not generalize well for all use cases.
|
|
|
70 |
|
71 |
## How to use
|
72 |
To get the correct<sup>1</sup> model's prediction scores with values between 0.0 and 5.0, use the following code:
|
|
|
91 |
|
92 |
predictions = pipe(prepare(sentence_pairs), add_special_tokens=False)
|
93 |
|
94 |
+
# convert back to scores to the original 0 and 5 interval
|
95 |
for prediction in predictions:
|
96 |
prediction['score'] = logit(prediction['score'])
|
97 |
print(predictions)
|
98 |
```
|
99 |
Expected output:
|
100 |
```
|
101 |
+
[{'label': 'SIMILARITY', 'score': 2.118301674983813},
|
102 |
+
{'label': 'SIMILARITY', 'score': 2.1799755855125853},
|
103 |
+
{'label': 'SIMILARITY', 'score': 0.9511617858568939}]
|
104 |
```
|
105 |
|
106 |
<sup>1</sup> _**avoid using the widget** scores since they are normalized and do not reflect the original annotation values._
|
107 |
+
|
108 |
+
## Training
|
109 |
+
|
110 |
+
### Training data
|
111 |
+
We used the STS dataset in Catalan called [STS-ca](https://huggingface.co/datasets/projecte-aina/sts-ca) for training and evaluation.
|
112 |
+
|
113 |
+
### Training Procedure
|
114 |
+
The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set, and then evaluated it on the test set.
|
115 |
+
|
116 |
+
## Evaluation
|
117 |
+
|
118 |
+
### Variable and Metrics
|
119 |
+
|
120 |
+
This model was finetuned maximizing the average score between the Pearson and Spearman correlations.
|
121 |
+
|
122 |
+
## Evaluation results
|
123 |
+
We evaluated the _roberta-base-ca-cased-sts_ on the STS-ca test set against standard multilingual and monolingual baselines:
|
124 |
+
|
125 |
+
| Model | STS-ca (Pearson score) |
|
126 |
+
| ------------|:-------------|
|
127 |
+
| roberta-base-ca-cased-sts | 79.73 |
|
128 |
+
| mBERT | 74.26 |
|
129 |
+
| XLM-RoBERTa | 61.61 |
|
130 |
+
|
131 |
+
For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
|
132 |
+
|
133 |
+
## Licensing Information
|
134 |
+
|
135 |
+
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
136 |
+
|
137 |
+
## Citation Information
|
138 |
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
|
139 |
```bibtex
|
140 |
@inproceedings{armengol-estape-etal-2021-multilingual,
|
|
|
157 |
pages = "4933--4946",
|
158 |
}
|
159 |
```
|
160 |
+
|
161 |
+
### Funding
|
162 |
+
This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
|
163 |
+
|
164 |
+
## Contributions
|
165 |
+
|
166 |
+
[N/A]
|