File size: 3,897 Bytes
c1c2dea b54738e c1c2dea f8a5b04 c1c2dea bbe423e c1c2dea d8fa05d c1c2dea ab7e37c c1c2dea ab7e37c d1599e9 ab7e37c b5912ed 2c364fb c1c2dea fa065c4 84da7be fa065c4 3f09a10 c1c2dea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
---
language:
- ca
license: apache-2.0
tags:
- "catalan"
- "semantic textual similarity"
- "sts-ca"
- "CaText"
- "Catalan Textual Corpus"
datasets:
- "projecte-aina/sts-ca"
metrics:
- "pearson"
model-index:
- name: roberta-base-ca-cased-sts
results:
- task:
type: sentence-similarity
dataset:
type: projecte-aina/sts-ca
name: sts-ca
metrics:
- type: pearson
value: 0.8120486139447483
---
# Catalan BERTa (RoBERTa-base) finetuned for Semantic Textual Similarity.
The **roberta-base-ca-cased-sts** is a Semantic Textual Similarity (STS) model for the Catalan language fine-tuned from the [BERTa](https://huggingface.co./PlanTL-GOB-ES/roberta-base-ca) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the BERTa model card for more details).
## Datasets
We used the STS dataset in Catalan called [STS-ca](https://huggingface.co./datasets/projecte-aina/sts-ca) for training and evaluation.
## Evaluation and results
We evaluated the _roberta-base-ca-cased-sts_ on the STS-ca test set against standard multilingual and monolingual baselines:
| Model | STS-ca (Pearson) |
|:------------|:----|
| roberta-base-ca-cased-sts | **81.20** |
| mBERT | 76.34 |
| XLM-RoBERTa | 75.40 |
| WikiBERT-ca | 77.18 |
For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
## How to use
To get the correct<sup>1</sup> model's prediction scores with values between 0.0 and 5.0, use the following code:
```python
from transformers import pipeline, AutoTokenizer
from scipy.special import logit
model = 'projecte-aina/roberta-base-ca-cased-sts'
tokenizer = AutoTokenizer.from_pretrained(model)
pipe = pipeline('text-classification', model=model, tokenizer=tokenizer)
def prepare(sentence_pairs):
sentence_pairs_prep = []
for s1, s2 in sentence_pairs:
sentence_pairs_prep.append(f"{tokenizer.cls_token} {s1}{tokenizer.sep_token}{tokenizer.sep_token} {s2}{tokenizer.sep_token}")
return sentence_pairs_prep
sentence_pairs = [("El llibre va caure per la finestra.", "El llibre va sortir volant."),
("M'agrades.", "T'estimo."),
("M'agrada el sol i la calor", "A la Garrotxa plou molt.")]
predictions = pipe(prepare(sentence_pairs), add_special_tokens=False)
# convert back to scores to the original 1 and 5 interval
for prediction in predictions:
prediction['score'] = logit(prediction['score'])
print(predictions)
```
Expected output:
```
[{'label': 'SIMILARITY', 'score': 2.4280577200108384},
{'label': 'SIMILARITY', 'score': 2.132843521240822},
{'label': 'SIMILARITY', 'score': 1.615101695426227}]
```
<sup>1</sup> _**avoid using the widget** scores since they are normalized and do not reflect the original annotation values._
## Citing
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
|