File size: 5,484 Bytes
d39986c d45b65c d39986c 38ea58d d39986c 551b9a4 d39986c 38ea58d 551b9a4 680be5c 551b9a4 38ea58d 551b9a4 38ea58d 551b9a4 38ea58d d39986c 38ea58d d39986c 38ea58d d39986c 38ea58d d39986c 551b9a4 fd4b6b7 551b9a4 38ea58d 551b9a4 38ea58d 551b9a4 38ea58d 73c4b37 38ea58d d45b65c 551b9a4 38ea58d 551b9a4 fd4b6b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
---
language:
- ca
license: apache-2.0
tags:
- "catalan"
- "part of speech tagging"
- "pos"
- "CaText"
- "Catalan Textual Corpus"
datasets:
- "universal_dependencies"
metrics:
- f1
inference:
parameters:
aggregation_strategy: "first"
model-index:
- name: roberta-base-ca-cased-pos
results:
- task:
type: token-classification
dataset:
type: universal_dependencies
name: Ancora-ca-POS
metrics:
- name: F1
type: f1
value: 0.9893832385244624
widget:
- text: "Em dic Lluïsa i visc a Santa Maria del Camí."
- text: "L'Aina, la Berta i la Norma són molt amigues."
- text: "El Martí llegeix el Cavall Fort."
---
# Catalan BERTa (roberta-base-ca) finetuned for Part-of-speech-tagging (POS)
## Table of Contents
- [Model Description](#model-description)
- [Intended Uses and Limitations](#intended-uses-and-limitations)
- [How to Use](#how-to-use)
- [Training](#training)
- [Training Data](#training-data)
- [Training Procedure](#training-procedure)
- [Evaluation](#evaluation)
- [Variable and Metrics](#variable-and-metrics)
- [Evaluation Results](#evaluation-results)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Funding](#funding)
- [Contributions](#contributions)
- [Disclaimer](#disclaimer)
## Model description
The **roberta-base-ca-cased-pos** is a Part-of-speech-tagging (POS) model for the Catalan language fine-tuned from the roberta-base-ca model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers.
## Intended Uses and Limitations
**roberta-base-ca-cased-pos** model can be used to Part-of-speech-tagging (POS) a text. The model is limited by its training dataset and may not generalize well for all use cases.
## How to Use
Here is how to use this model:
```python
from transformers import pipeline
from pprint import pprint
nlp = pipeline("token-classification", model="projecte-aina/roberta-base-ca-cased-pos")
example = "Em dic Lluïsa i visc a Santa Maria del Camí."
pos_results = nlp(example)
pprint(pos_results)
```
## Training
### Training data
We used the POS dataset in Catalan from the [Universal Dependencies Treebank](https://huggingface.co./datasets/universal_dependencies) we refer to _Ancora-ca-pos_ for training and evaluation.
### Training Procedure
The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
## Evaluation
### Variable and Metrics
This model was finetuned maximizing F1 score.
## Evaluation results
We evaluated the _roberta-base-ca-cased-pos_ on the Ancora-ca-ner test set against standard multilingual and monolingual baselines:
| Model | AnCora-Ca-POS (F1) |
| ------------|:-------------|
| roberta-base-ca-cased-pos |**98.93** |
| mBERT | 98.82 |
| XLM-RoBERTa | 98.89 |
| WikiBERT-ca | 97.60 |
For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
## Licensing Information
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
## Citation Information
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
### Funding
This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
## Contributions
[N/A]
## Disclaimer
<details>
<summary>Click to expand</summary>
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.
In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
|