--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # ST-NLI-ca_paraphrase-multilingual-mpnet-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It has been developed through further training of a multilingual fine-tuned model, [paraphrase-multilingual-mpnet-base-v2](https://huggingface.co./sentence-transformers/paraphrase-multilingual-mpnet-base-v2) using NLI data. Specifically, it was trained on two Catalan NLI datasets: [TE-ca](https://huggingface.co./datasets/projecte-aina/teca) and the professional translation of XNLI into Catalan. The training employed the Multiple Negatives Ranking Loss with Hard Negatives, which leverages triplets composed of a premise, an entailed hypothesis, and a contradiction. It is important to note that, given this format, neutral hypotheses from the NLI datasets were not used for training. Additionally, as a form of data augmentation, the model's training set was expanded by duplicating the triplets, wherein the order of the premise and entailed hypothesis was reversed, resulting in a total of 18,928 triplets. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer, util sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` For instance, to sort a list of sentences by their similarity to a reference sentence, the following code can be used: ```python reference_sent = "Avui és un bon dia." sentences = [ "M'agrada el dia que fa.", "Tothom té un mal dia.", "És dijous.", "Fa un dia realment dolent", ] reference_sent_embedding = model.encode(reference_sent) similarity_scores = {} for sentence in sentences: sent_embedding = model.encode(sentence) cosine_similarity = util.pytorch_cos_sim(reference_sent_embedding, sent_embedding) similarity_scores[float(cosine_similarity.data[0][0])] = sentence print(f"Sentences in order of similarity to '{reference_sent}' (from max to min):") for i, (cosine_similarity,sent) in enumerate(dict(sorted(similarity_scores.items(), reverse=True)).items()): print(f"{i}) '{sent}': {cosine_similarity}") ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results We evaluated the model on the test set of the Catalan Semantic Text Similarity ([STS-ca](https://huggingface.co./datasets/projecte-aina/sts-ca)), and on two paraphrase identification tasks in Catalan: [Parafraseja](https://huggingface.co./datasets/projecte-aina/Parafraseja) and the professional translation of PAWS into Catalan. | STS-ca (Pearson) | Parafraseja (acc) | PAWS-ca (acc) | |------------------|-------------------|---------------| | 0.65 | 0.72 | 0.65 | ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 147 with parameters: ``` {'batch_size': 128} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 14, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 15, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors For further information, send an email to aina@bsc.es