Update README.md
Browse files
README.md
CHANGED
@@ -63,10 +63,10 @@ pipeline_tag: sentence-similarity
|
|
63 |
|
64 |
# Request, Terms, Disclaimers
|
65 |
|
|
|
66 |
|
67 |
<center>
|
68 |
<img src="./ar_terms.png" width=250%/>
|
69 |
-
<b><p>[https://github.com/sponsors/PrithivirajDamodaran](https://github.com/sponsors/PrithivirajDamodaran)</p><b>
|
70 |
</center>
|
71 |
|
72 |
|
@@ -173,7 +173,7 @@ The below numbers are with mDPR model, but miniDense_arabic_v1 should give a eve
|
|
173 |
|
174 |
| Language | ISO | nDCG@10 BM25 | nDCG@10 mDPR | nDCG@10 Hybrid |
|
175 |
|-----------|-----|--------------|--------------|----------------|
|
176 |
-
| **Arabic** | **ar** | **0.395** | **0.499** | **0.
|
177 |
|
178 |
*Note: MIRACL paper shows a different (higher) value for BM25 Arabic, So we are taking that value from BGE-M3 paper, rest all are form the MIRACL paper.*
|
179 |
|
@@ -184,7 +184,7 @@ So it makes sense to evaluate our models in retrieval slice of the MTEB benchmar
|
|
184 |
##### Long Document Retrieval
|
185 |
|
186 |
<center>
|
187 |
-
<img src="./ar_metrics_4.png" width=
|
188 |
<b><p>Table 3: Detailed Arabic retrieval performance on the MultiLongDoc dev set (measured by nDCG@10)</p></b>
|
189 |
</center>
|
190 |
|
@@ -194,7 +194,7 @@ So it makes sense to evaluate our models in retrieval slice of the MTEB benchmar
|
|
194 |
Almost all models below are monolingual arabic models based so they have no notion of any other languages.
|
195 |
|
196 |
<center>
|
197 |
-
<img src="./ar_metrics_5.png" width=
|
198 |
<b><p>Table 4: Detailed Arabic retrieval performance on the 3 X-lingual test set (measured by nDCG@10)</p></b>
|
199 |
</center>
|
200 |
|
|
|
63 |
|
64 |
# Request, Terms, Disclaimers
|
65 |
|
66 |
+
[https://github.com/sponsors/PrithivirajDamodaran](https://github.com/sponsors/PrithivirajDamodaran)
|
67 |
|
68 |
<center>
|
69 |
<img src="./ar_terms.png" width=250%/>
|
|
|
70 |
</center>
|
71 |
|
72 |
|
|
|
173 |
|
174 |
| Language | ISO | nDCG@10 BM25 | nDCG@10 mDPR | nDCG@10 Hybrid |
|
175 |
|-----------|-----|--------------|--------------|----------------|
|
176 |
+
| **Arabic** | **ar** | **0.395** | **0.499** | **0.673** |
|
177 |
|
178 |
*Note: MIRACL paper shows a different (higher) value for BM25 Arabic, So we are taking that value from BGE-M3 paper, rest all are form the MIRACL paper.*
|
179 |
|
|
|
184 |
##### Long Document Retrieval
|
185 |
|
186 |
<center>
|
187 |
+
<img src="./ar_metrics_4.png" width=80%/>
|
188 |
<b><p>Table 3: Detailed Arabic retrieval performance on the MultiLongDoc dev set (measured by nDCG@10)</p></b>
|
189 |
</center>
|
190 |
|
|
|
194 |
Almost all models below are monolingual arabic models based so they have no notion of any other languages.
|
195 |
|
196 |
<center>
|
197 |
+
<img src="./ar_metrics_5.png" width=80%/>
|
198 |
<b><p>Table 4: Detailed Arabic retrieval performance on the 3 X-lingual test set (measured by nDCG@10)</p></b>
|
199 |
</center>
|
200 |
|