--- license: apache-2.0 language: - en base_model: - HuggingFaceTB/SmolLM2-135M-Instruct pipeline_tag: text-generation library_name: transformers tags: - trl - smolLM - llama - CoT - Thinker - LlamaForCausalLM --- ![reasoning smollm2.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/esGDxU03DomxWcK78LqcQ.png) # **REASONING SMOLLM2 135M ON CUSTOM SYNTHETIC DATA** SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device. Fine-tuning a language model like SmolLM involves several steps, from setting up the environment to training the model and saving the results. Below is a detailed step-by-step guide based on the provided notebook file --- # How to use `Transformers` ```bash pip install transformers ``` ```python from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "prithivMLmods/Reasoning-SmolLM2-135M" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")` model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) messages = [{"role": "user", "content": "What is the capital of France."}] input_text=tokenizer.apply_chat_template(messages, tokenize=False) inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True) print(tokenizer.decode(outputs[0])) ``` ### **Step 1: Setting Up the Environment** Before diving into fine-tuning, you need to set up your environment with the necessary libraries and tools. 1. **Install Required Libraries**: - Install the necessary Python libraries using `pip`. These include `transformers`, `datasets`, `trl`, `torch`, `accelerate`, `bitsandbytes`, and `wandb`. - These libraries are essential for working with Hugging Face models, datasets, and training loops. ```python !pip install transformers datasets trl torch accelerate bitsandbytes wandb ``` 2. **Import Necessary Modules**: - Import the required modules from the installed libraries. These include `AutoModelForCausalLM`, `AutoTokenizer`, `TrainingArguments`, `pipeline`, `load_dataset`, and `SFTTrainer`. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, pipeline from datasets import load_dataset from trl import SFTConfig, SFTTrainer, setup_chat_format import torch import os ``` 3. **Detect Device (GPU, MPS, or CPU)**: - Detect the available hardware (GPU, MPS, or CPU) to ensure the model runs on the most efficient device. ```python device = ( "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" ) ``` --- ### **Step 2: Load the Pre-trained Model and Tokenizer** Next, load the pre-trained SmolLM model and its corresponding tokenizer. 1. **Load the Model and Tokenizer**: - Use `AutoModelForCausalLM` and `AutoTokenizer` to load the SmolLM model and tokenizer from Hugging Face. ```python model_name = "HuggingFaceTB/SmolLM2-360M" model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=model_name) tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=model_name) ``` 2. **Set Up Chat Format**: - Use the `setup_chat_format` function to prepare the model and tokenizer for chat-based tasks. ```python model, tokenizer = setup_chat_format(model=model, tokenizer=tokenizer) ``` 3. **Test the Base Model**: - Test the base model with a simple prompt to ensure it’s working correctly. ```python prompt = "Explain AGI ?" pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if device == "cuda" else -1) print(pipe(prompt, max_new_tokens=200)) ``` 4. **If: Encountering**: - Chat template is already added to the tokenizer, indicates that the tokenizer already has a predefined chat template, which prevents the setup_chat_format() from modifying it again. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct" model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=model_name) tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=model_name) tokenizer.chat_template = None from trl.models.utils import setup_chat_format model, tokenizer = setup_chat_format(model=model, tokenizer=tokenizer) prompt = "Explain AGI?" pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) print(pipe(prompt, max_new_tokens=200)) ``` *📍 Else Skip the Part [ Step 4 ] !* --- ### **Step 3: Load and Prepare the Dataset** Fine-tuning requires a dataset. In this case, we’re using a custom dataset called `Deepthink-Reasoning`. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/JIwUAT-NpqpN18zUdo6uW.png) 1. **Load the Dataset**: - Use the `load_dataset` function to load the dataset from Hugging Face. ```python ds = load_dataset("prithivMLmods/Deepthink-Reasoning") ``` 2. **Tokenize the Dataset**: - Define a tokenization function that processes the dataset in batches. This function applies the chat template to each prompt-response pair and tokenizes the text. ```python def tokenize_function(examples): prompts = [p.strip() for p in examples["prompt"]] responses = [r.strip() for r in examples["response"]] texts = [ tokenizer.apply_chat_template( [{"role": "user", "content": p}, {"role": "assistant", "content": r}], tokenize=False ) for p, r in zip(prompts, responses) ] return tokenizer(texts, truncation=True, padding="max_length", max_length=512) ``` 3. **Apply Tokenization**: - Apply the tokenization function to the dataset. ```python ds = ds.map(tokenize_function, batched=True) ``` --- ### **Step 4: Configure Training Arguments** Set up the training arguments to control the fine-tuning process. 1. **Define Training Arguments**: - Use `TrainingArguments` to specify parameters like batch size, learning rate, number of steps, and optimization settings. ```python use_bf16 = torch.cuda.is_bf16_supported() training_args = TrainingArguments( per_device_train_batch_size=2, gradient_accumulation_steps=4, warmup_steps=5, max_steps=60, learning_rate=2e-4, fp16=not use_bf16, bf16=use_bf16, logging_steps=1, optim="adamw_8bit", weight_decay=0.01, lr_scheduler_type="linear", seed=3407, output_dir="outputs", report_to="wandb", ) ``` --- ### **Step 5: Initialize the Trainer** Initialize the `SFTTrainer` with the model, tokenizer, dataset, and training arguments. ```python trainer = SFTTrainer( model=model, processing_class=tokenizer, train_dataset=ds["train"], args=training_args, ) ``` --- ### **Step 6: Start Training** Begin the fine-tuning process by calling the `train` method on the trainer. ```python trainer.train() ``` --- ### **Step 7: Save the Fine-Tuned Model** After training, save the fine-tuned model and tokenizer to a local directory. 1. **Save Model and Tokenizer**: - Use the `save_pretrained` method to save the model and tokenizer. ```python save_directory = "/content/my_model" model.save_pretrained(save_directory) tokenizer.save_pretrained(save_directory) ``` 2. **Zip and Download the Model**: - Zip the saved directory and download it for future use. ```python import shutil shutil.make_archive(save_directory, 'zip', save_directory) from google.colab import files files.download(f"{save_directory}.zip") ``` --- ### **Model & Quant** | **Item** | **Link** | |----------|----------| | **Model** | [SmolLM2-CoT-360M](https://huggingface.co./prithivMLmods/SmolLM2-CoT-360M) | | **Quantized Version** | [SmolLM2-CoT-360M-GGUF](https://huggingface.co./prithivMLmods/SmolLM2-CoT-360M-GGUF) | | **Notebook** | **Link** | |--------------|----------| | SmolLM-FT-360M | [SmolLM-FT-360M.ipynb](https://huggingface.co./datasets/prithivMLmods/FinetuneRT-Colab/blob/main/SmolLM-FT/SmolLM-FT-360M.ipynb) | ### **Conclusion** Fine-tuning SmolLM involves setting up the environment, loading the model and dataset, configuring training parameters, and running the training loop. By following these steps, you can adapt SmolLM to your specific use case, whether it’s for reasoning tasks, chat-based applications, or other NLP tasks. This process is highly customizable, so feel free to experiment with different datasets, hyperparameters, and training strategies to achieve the best results for your project. ---