prithivMLmods commited on
Commit
53ecae3
·
verified ·
1 Parent(s): 8e308eb

Adding Evaluation Results (#2)

Browse files

- Adding Evaluation Results (4fed05fae446c94790c20547dc90cef514e7b09b)

Files changed (1) hide show
  1. README.md +114 -0
README.md CHANGED
@@ -10,6 +10,105 @@ tags:
10
  - CoT
11
  - Convsersational
12
  - text-generation-inference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ---
14
  # **QwQ-LCoT-14B-Conversational**
15
 
@@ -121,3 +220,18 @@ QwQ-LCoT-14B-Conversational is ideal for:
121
  6. **Resource Intensive**: As a large-scale model with 14 billion parameters, it requires substantial computational resources for both inference and deployment, limiting its use in resource-constrained environments.
122
 
123
  7. **Instruction Ambiguity**: The model’s performance can degrade when instructions are ambiguous, vague, or conflicting, potentially leading to outputs that do not align with user expectations.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  - CoT
11
  - Convsersational
12
  - text-generation-inference
13
+ model-index:
14
+ - name: QwQ-LCoT-14B-Conversational
15
+ results:
16
+ - task:
17
+ type: text-generation
18
+ name: Text Generation
19
+ dataset:
20
+ name: IFEval (0-Shot)
21
+ type: wis-k/instruction-following-eval
22
+ split: train
23
+ args:
24
+ num_few_shot: 0
25
+ metrics:
26
+ - type: inst_level_strict_acc and prompt_level_strict_acc
27
+ value: 40.47
28
+ name: averaged accuracy
29
+ source:
30
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT-14B-Conversational
31
+ name: Open LLM Leaderboard
32
+ - task:
33
+ type: text-generation
34
+ name: Text Generation
35
+ dataset:
36
+ name: BBH (3-Shot)
37
+ type: SaylorTwift/bbh
38
+ split: test
39
+ args:
40
+ num_few_shot: 3
41
+ metrics:
42
+ - type: acc_norm
43
+ value: 45.63
44
+ name: normalized accuracy
45
+ source:
46
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT-14B-Conversational
47
+ name: Open LLM Leaderboard
48
+ - task:
49
+ type: text-generation
50
+ name: Text Generation
51
+ dataset:
52
+ name: MATH Lvl 5 (4-Shot)
53
+ type: lighteval/MATH-Hard
54
+ split: test
55
+ args:
56
+ num_few_shot: 4
57
+ metrics:
58
+ - type: exact_match
59
+ value: 31.42
60
+ name: exact match
61
+ source:
62
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT-14B-Conversational
63
+ name: Open LLM Leaderboard
64
+ - task:
65
+ type: text-generation
66
+ name: Text Generation
67
+ dataset:
68
+ name: GPQA (0-shot)
69
+ type: Idavidrein/gpqa
70
+ split: train
71
+ args:
72
+ num_few_shot: 0
73
+ metrics:
74
+ - type: acc_norm
75
+ value: 13.31
76
+ name: acc_norm
77
+ source:
78
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT-14B-Conversational
79
+ name: Open LLM Leaderboard
80
+ - task:
81
+ type: text-generation
82
+ name: Text Generation
83
+ dataset:
84
+ name: MuSR (0-shot)
85
+ type: TAUR-Lab/MuSR
86
+ args:
87
+ num_few_shot: 0
88
+ metrics:
89
+ - type: acc_norm
90
+ value: 20.62
91
+ name: acc_norm
92
+ source:
93
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT-14B-Conversational
94
+ name: Open LLM Leaderboard
95
+ - task:
96
+ type: text-generation
97
+ name: Text Generation
98
+ dataset:
99
+ name: MMLU-PRO (5-shot)
100
+ type: TIGER-Lab/MMLU-Pro
101
+ config: main
102
+ split: test
103
+ args:
104
+ num_few_shot: 5
105
+ metrics:
106
+ - type: acc
107
+ value: 47.54
108
+ name: accuracy
109
+ source:
110
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT-14B-Conversational
111
+ name: Open LLM Leaderboard
112
  ---
113
  # **QwQ-LCoT-14B-Conversational**
114
 
 
220
  6. **Resource Intensive**: As a large-scale model with 14 billion parameters, it requires substantial computational resources for both inference and deployment, limiting its use in resource-constrained environments.
221
 
222
  7. **Instruction Ambiguity**: The model’s performance can degrade when instructions are ambiguous, vague, or conflicting, potentially leading to outputs that do not align with user expectations.
223
+
224
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
225
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__QwQ-LCoT-14B-Conversational-details)!
226
+ Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FQwQ-LCoT-14B-Conversational&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
227
+
228
+ | Metric |Value (%)|
229
+ |-------------------|--------:|
230
+ |**Average** | 33.16|
231
+ |IFEval (0-Shot) | 40.47|
232
+ |BBH (3-Shot) | 45.63|
233
+ |MATH Lvl 5 (4-Shot)| 31.42|
234
+ |GPQA (0-shot) | 13.31|
235
+ |MuSR (0-shot) | 20.62|
236
+ |MMLU-PRO (5-shot) | 47.54|
237
+