--- license: apache-2.0 language: - en base_model: - prithivMLmods/Open-R1-Mini-Experimental pipeline_tag: image-text-to-text library_name: transformers tags: - reasoner - open - r1 - explainer --- ![zfdsdfg.gif](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/WgW-xws4vzFJj48x2niWX.gif) > [!WARNING] > **Note:** This model contains artifacts and may perform poorly in some cases. # **Open-R1-Mini-Experimental-GGUF** The **Open-R1-Mini-Experimental-GGUF** model is a fine-tuned version of **Qwen/Qwen2-VL-2B-Instruct**, specifically designed for **reasoning tasks**, **context reasoning**, and **multi-modal understanding** based on the **R1 reasoning logits data**. This model integrates a conversational approach with deep reasoning capabilities to handle complex multi-modal tasks efficiently. #### Key Enhancements: * **Advanced Contextual Reasoning**: Open-R1-Mini-Experimental-GGUF achieves state-of-the-art performance in reasoning tasks by leveraging R1 reasoning logits data, enhancing logical inference and decision-making. * **Understanding images of various resolution & ratio**: The model excels at visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc. * **Long-Context Video Understanding**: Capable of processing and reasoning over videos of 20 minutes or more for high-quality video-based question answering, content creation, and dialogue. * **Device Integration**: With strong reasoning and decision-making abilities, the model can be integrated into mobile devices, robots, and automation systems for real-time operation based on both visual and textual input. * **Multilingual Support**: Supports text understanding in various languages within images, including English, Chinese, Japanese, Korean, Arabic, most European languages, and Vietnamese. # **Sample Inference** | Example | Image | |---------|-------| | **Example 1** | ![lkdfgnlhbnpf.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/LujbI0bFBqrrvMSmiz4Kt.png) | | **Example 2** | ![open-r1.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Ay3lb1nG7D-S56fV6qakg.png) | | **Example 3** | ![1.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/oOR-sIIdg1ZW6c_2MKb4M.png) | | **Example 4** | ![3.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/CX9B001c9IOfhfFCx2qhP.png) | | **Example 5** | ![4.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/LYGGRiaoOEozW0GQECTGW.png) | **Demo:** https://huggingface.co./prithivMLmods/Open-R1-Mini-Experimental/blob/main/open-r1-reasoner-doc-py/open-r1-exp.ipynb ### How to Use ```python from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info # Load the model with automatic device placement model = Qwen2VLForConditionalGeneration.from_pretrained( "prithivMLmods/Open-R1-Mini-Experimental", torch_dtype="auto", device_map="auto" ) # Recommended: Enable flash_attention_2 for better performance in multi-image and video tasks # model = Qwen2VLForConditionalGeneration.from_pretrained( # "prithivMLmods/Open-R1-Mini-Experimental", # torch_dtype=torch.bfloat16, # attn_implementation="flash_attention_2", # device_map="auto", # ) # Load processor processor = AutoProcessor.from_pretrained("prithivMLmods/Open-R1-Mini-Experimental-GGUF") # Adjust visual token range for optimized memory usage # min_pixels = 256*28*28 # max_pixels = 1280*28*28 # processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Analyze the context of this image."}, ], } ] # Prepare input text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ### Buffer Handling ```python buffer = "" for new_text in streamer: buffer += new_text buffer = buffer.replace("<|im_end|>", "") yield buffer ``` ### **Key Features** 1. **Advanced Contextual Reasoning:** - Optimized for **context-aware problem-solving** and **logical inference** based on R1 reasoning logits. 2. **Optical Character Recognition (OCR):** - Extracts and processes text from images with exceptional accuracy. 3. **Mathematical and Logical Problem Solving:** - Supports complex reasoning and outputs equations in **LaTeX format**. 4. **Conversational and Multi-Turn Interaction:** - Handles **multi-turn dialogue** with enhanced memory retention and response coherence. 5. **Multi-Modal Inputs & Outputs:** - Processes images, text, and combined inputs to generate insightful analyses. 6. **Secure and Efficient Model Loading:** - Uses **Safetensors** for faster and more secure model weight handling.