File size: 3,238 Bytes
519fcc6 b346525 3209493 b346525 fb5d1d5 9a0b7ff b346525 4e54425 b346525 9a0b7ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
language:
- en
base_model:
- google/siglip2-base-patch16-224
pipeline_tag: image-classification
library_name: transformers
---
# **Guard-Against-Unsafe-Content-Siglip2**
**Guard-Against-Unsafe-Content-Siglip2** is an image classification vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for a single-label classification task. It is designed to detect NSFW content, including vulgarity and nudity, using the SiglipForImageClassification architecture.
The model categorizes images into two classes:
- **Class 0:** "Unsafe Content" – indicating that the image contains vulgarity, nudity, or explicit content.
- **Class 1:** "Safe Content" – indicating that the image is appropriate and does not contain any unsafe elements.
# **Run with Transformers🤗**
```python
!pip install -q transformers torch pillow gradio
```
```python
import gradio as gr
from transformers import AutoImageProcessor
from transformers import SiglipForImageClassification
from transformers.image_utils import load_image
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Guard-Against-Unsafe-Content-Siglip2"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
def nsfw_detection(image):
"""Predicts NSFW probability scores for an image."""
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
labels = model.config.id2label
predictions = {labels[i]: round(probs[i], 3) for i in range(len(probs))}
return predictions
# Create Gradio interface
iface = gr.Interface(
fn=nsfw_detection,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="NSFW Content Detection"),
title="NSFW Image Detection",
description="Upload an image to check if it contains unsafe content such as vulgarity or nudity."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
```
TrainOutput(global_step=376, training_loss=0.11756020403922872, metrics={'train_runtime': 597.6963, 'train_samples_per_second': 20.077, 'train_steps_per_second': 0.629, 'total_flos': 1.005065949855744e+18, 'train_loss': 0.11756020403922872, 'epoch': 2.0})
# **Intended Use:**
The **Guard-Against-Unsafe-Content-Siglip2** model is designed to detect **inappropriate and explicit content** in images. It helps distinguish between **safe** and **unsafe** images based on the presence of **vulgarity, nudity, or other NSFW elements**.
### Potential Use Cases:
- **NSFW Content Detection:** Identifying images containing explicit content to help filter inappropriate material.
- **Content Moderation:** Assisting platforms in filtering out unsafe images before they are shared publicly.
- **Parental Controls:** Enabling automated filtering of explicit images in child-friendly environments.
- **Safe Image Classification:** Helping AI-powered applications distinguish between safe and unsafe content for appropriate usage. |