--- license: apache-2.0 language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - fire-detection --- # **Fire-Detection-Siglip2** **Fire-Detection-Siglip2** is an image classification vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for a single-label classification task. It is designed to detect fire, smoke, or normal conditions using the SiglipForImageClassification architecture. The model categorizes images into three classes: - **Class 0:** "Fire" – The image shows active fire. - **Class 1:** "Normal" – The image depicts a normal, fire-free environment. - **Class 2:** "Smoke" – The image contains visible smoke, indicating potential fire risk. # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Fire-Detection-Siglip2" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def fire_detection(image): """Classifies an image as fire, smoke, or normal conditions.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = model.config.id2label predictions = {labels[i]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=fire_detection, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Detection Result"), title="Fire Detection Model", description="Upload an image to determine if it contains fire, smoke, or a normal condition." ) # Launch the app if __name__ == "__main__": iface.launch() ``` Classification report: precision recall f1-score support fire 0.9940 0.9881 0.9911 1010 normal 0.9892 0.9941 0.9916 1010 smoke 0.9990 1.0000 0.9995 1010 accuracy 0.9941 3030 macro avg 0.9941 0.9941 0.9941 3030 weighted avg 0.9941 0.9941 0.9941 3030 # **Intended Use:** The **Fire-Detection-Siglip2** model is designed to classify images into three categories: **fire, smoke, or normal conditions**. It helps in early fire detection and environmental monitoring. ### Potential Use Cases: - **Fire Safety Monitoring:** Detecting fire and smoke in surveillance footage. - **Early Warning Systems:** Helping in real-time fire hazard detection in public and private areas. - **Disaster Prevention:** Assisting emergency response teams by identifying fire-prone areas. - **Smart Home & IoT Integration:** Enhancing automated fire alert systems in smart security setups.