File size: 9,466 Bytes
c1fe92e
f515985
c1fe92e
 
 
f515985
c1fe92e
 
6e98aeb
 
f515985
12260c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d160b50
 
12260c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d160b50
 
12260c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d160b50
 
12260c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d160b50
 
12260c8
 
 
 
 
 
 
 
 
 
 
 
 
 
d160b50
 
12260c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d160b50
 
12260c8
2e4d38a
 
4b41332
 
 
 
 
 
 
 
 
 
 
 
2839542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58fbf6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12260c8
 
 
 
 
 
 
 
 
 
 
 
 
d160b50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen2.5-14B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- Opus
- text-generation-inference
model-index:
- name: Calcium-Opus-20B-v1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 30.93
      name: averaged accuracy
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-20B-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 41.81
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-20B-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 11.03
      name: exact match
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-20B-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 13.76
      name: acc_norm
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-20B-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 22.09
      name: acc_norm
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-20B-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 41.49
      name: accuracy
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-20B-v1
      name: Open LLM Leaderboard
---
![opus.gif](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/-vC9B4g2ccchvbS00HffZ.gif)

# **Calcium-Opus-20B-v1**

Calcium-Opus-20B-v1 is based on the Qwen 2.5 modality architecture, designed to enrich the reasoning capabilities of 20B-parameter models. These models have proven highly effective for context understanding, reasoning, and mathematical problem-solving. 

Key improvements include:  
1. **Enhanced Knowledge and Expertise**: The model demonstrates significantly more knowledge and greatly improved capabilities in coding and mathematics, thanks to specialized expert models in these domains.  
2. **Improved Instruction Following**: It shows significant advancements in following instructions, generating long texts (over 8K tokens), understanding structured data (e.g., tables), and producing structured outputs, especially in JSON format.  
3. **Better Adaptability**: The model is more resilient to diverse system prompts, enabling enhanced role-playing implementations and condition-setting for chatbots.  
4. **Long-Context Support**: It offers long-context support of up to 128K tokens and can generate up to 8K tokens in a single output.  
5. **Multilingual Proficiency**: The model supports over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.

# **Quickstart with Transformers**

Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/Calcium-Opus-20B-v1"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

# **Intended Use**  
1. **Reasoning and Context Understanding**:  
   Designed to assist with complex reasoning tasks, contextual understanding, and solving problems requiring logical deduction and critical thinking.  

2. **Mathematical Problem-Solving**:  
   Specialized for performing advanced mathematical reasoning and calculations, making it suitable for educational, scientific, and research-oriented applications.  

3. **Code Generation and Debugging**:  
   Offers robust support for coding tasks, including writing, debugging, and optimizing code in various programming languages, ideal for developers and software engineers.  

4. **Structured Data Analysis**:  
   Excels in processing and analyzing structured data, such as tables and JSON, and generating structured outputs, which is useful for data analysts and automation workflows.  

5. **Multilingual Applications**:  
   Supports over 29 languages, making it versatile for global applications like multilingual chatbots, content generation, and translations.  

6. **Extended Content Generation**:  
   Capable of generating long-form content (over 8K tokens), useful for writing reports, articles, and creating detailed instructional guides.  

7. **Interactive Role-Playing and Chatbots**:  
   Enhanced capabilities for role-playing and condition-setting, making it ideal for interactive chatbots, virtual assistants, and entertainment purposes.  

8. **Large-Context Tasks**:  
   With a context window of up to 128K tokens, it is ideal for analyzing or generating large documents, books, or datasets in a single session.  

# **Limitations**  
1. **Hardware Requirements**:  
   Due to its 20B parameter size and support for long-context inputs, running the model requires significant computational resources, including high-memory GPUs or TPUs.  

2. **Potential Bias in Multilingual Outputs**:  
   While it supports 29 languages, the quality and accuracy of outputs may vary depending on the language, especially for less-resourced languages.  

3. **Inconsistent Outputs for Creative Tasks**:  
   The model may occasionally produce inconsistent or repetitive results in creative writing, storytelling, or highly subjective tasks.  

4. **Limited Real-World Awareness**:  
   It lacks real-time knowledge of current events beyond its training cutoff, which may limit its ability to respond accurately to the latest information.  

5. **Error Propagation in Long-Text Outputs**:  
   In generating long texts, minor errors in early outputs can sometimes propagate, reducing the overall coherence and accuracy of the response.  

6. **Dependency on High-Quality Prompts**:  
   Performance may depend on the quality and specificity of the input prompt, requiring users to carefully design queries for optimal results.  

7. **Sensitivity to Adversarial Inputs**:  
   The model may struggle with adversarial or ambiguous inputs, leading to incorrect or irrelevant outputs.  

8. **Ethical and Safety Concerns**:  
   Potential misuse in generating misleading, harmful, or offensive content remains a concern, and guardrails must be implemented to ensure responsible use.  
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/prithivMLmods__Calcium-Opus-20B-v1-details)!
Summarized results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FCalcium-Opus-20B-v1&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    26.85|
|IFEval (0-Shot)    |    30.93|
|BBH (3-Shot)       |    41.81|
|MATH Lvl 5 (4-Shot)|    11.03|
|GPQA (0-shot)      |    13.76|
|MuSR (0-shot)      |    22.09|
|MMLU-PRO (5-shot)  |    41.49|