File size: 1,700 Bytes
0d46664
128db5d
 
 
 
 
 
 
 
 
0d46664
 
128db5d
 
0d46664
128db5d
 
0d46664
128db5d
0d46664
128db5d
0d46664
128db5d
0d46664
128db5d
0d46664
128db5d
0d46664
128db5d
0d46664
128db5d
0d46664
128db5d
0d46664
128db5d
0d46664
128db5d
 
 
 
 
 
 
 
 
 
 
 
 
 
1b0c0ab
128db5d
1b0c0ab
0d46664
 
128db5d
0d46664
128db5d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
base_model: /scratch/gpfs/DANQIC/ym0081/hf_cache/gemma-2-9b-it
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- /scratch/gpfs/DANQIC/ym0081/hf_cache/gemma2-ultrafeedback-armorm/dataset_dict/
model-index:
- name: gemma2-9b-simpo-beta-10-ratio-0.4-lr-8e-7
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](None)
# gemma2-9b-simpo-beta-10-ratio-0.4-lr-8e-7

This model is a fine-tuned version of [/scratch/gpfs/DANQIC/ym0081/hf_cache/gemma-2-9b-it](https://huggingface.co.//scratch/gpfs/DANQIC/ym0081/hf_cache/gemma-2-9b-it) on the /scratch/gpfs/DANQIC/ym0081/hf_cache/gemma2-ultrafeedback-armorm/dataset_dict/ dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results



### Framework versions

- Transformers 4.42.4
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1