File size: 1,700 Bytes
0d46664 128db5d 0d46664 128db5d 0d46664 128db5d 0d46664 128db5d 0d46664 128db5d 0d46664 128db5d 0d46664 128db5d 0d46664 128db5d 0d46664 128db5d 0d46664 128db5d 0d46664 128db5d 0d46664 128db5d 0d46664 128db5d 1b0c0ab 128db5d 1b0c0ab 0d46664 128db5d 0d46664 128db5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
base_model: /scratch/gpfs/DANQIC/ym0081/hf_cache/gemma-2-9b-it
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- /scratch/gpfs/DANQIC/ym0081/hf_cache/gemma2-ultrafeedback-armorm/dataset_dict/
model-index:
- name: gemma2-9b-simpo-beta-10-ratio-0.4-lr-8e-7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](None)
# gemma2-9b-simpo-beta-10-ratio-0.4-lr-8e-7
This model is a fine-tuned version of [/scratch/gpfs/DANQIC/ym0081/hf_cache/gemma-2-9b-it](https://huggingface.co.//scratch/gpfs/DANQIC/ym0081/hf_cache/gemma-2-9b-it) on the /scratch/gpfs/DANQIC/ym0081/hf_cache/gemma2-ultrafeedback-armorm/dataset_dict/ dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.42.4
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1
|