--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-sst2-epochs-2-lr-0.0001 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: train args: sst2 metrics: - name: Accuracy type: accuracy value: 0.99 --- # bert-base-uncased-sst2-epochs-2-lr-0.0001 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.0665 - Accuracy: 0.99 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 28 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1932 | 1.0 | 2102 | 0.0753 | 0.99 | | 0.1085 | 2.0 | 4204 | 0.0665 | 0.99 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3