--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-rte-ia3-epochs-10-lr-0.005 results: [] --- # bert-base-uncased-rte-ia3-epochs-10-lr-0.005 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6986 - Accuracy: 0.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 28 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 75 | 0.6797 | 0.58 | | No log | 2.0 | 150 | 0.6631 | 0.61 | | No log | 3.0 | 225 | 0.6239 | 0.62 | | No log | 4.0 | 300 | 0.5983 | 0.63 | | No log | 5.0 | 375 | 0.6250 | 0.68 | | No log | 6.0 | 450 | 0.6487 | 0.67 | | 0.6417 | 7.0 | 525 | 0.6473 | 0.64 | | 0.6417 | 8.0 | 600 | 0.6558 | 0.68 | | 0.6417 | 9.0 | 675 | 0.6865 | 0.69 | | 0.6417 | 10.0 | 750 | 0.6986 | 0.7 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3