File size: 2,016 Bytes
0493750 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert-base-uncased-rte-ia3-epochs-10-lr-0.005
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-rte-ia3-epochs-10-lr-0.005
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6986
- Accuracy: 0.7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 28
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 75 | 0.6797 | 0.58 |
| No log | 2.0 | 150 | 0.6631 | 0.61 |
| No log | 3.0 | 225 | 0.6239 | 0.62 |
| No log | 4.0 | 300 | 0.5983 | 0.63 |
| No log | 5.0 | 375 | 0.6250 | 0.68 |
| No log | 6.0 | 450 | 0.6487 | 0.67 |
| 0.6417 | 7.0 | 525 | 0.6473 | 0.64 |
| 0.6417 | 8.0 | 600 | 0.6558 | 0.68 |
| 0.6417 | 9.0 | 675 | 0.6865 | 0.69 |
| 0.6417 | 10.0 | 750 | 0.6986 | 0.7 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3
|