--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert-base-uncased-qqp-epochs-2-lr-0.0001 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: qqp split: train args: qqp metrics: - name: Accuracy type: accuracy value: 0.95 - name: F1 type: f1 value: 0.9333333333333333 --- # bert-base-uncased-qqp-epochs-2-lr-0.0001 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - Accuracy: 0.95 - F1: 0.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 28 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.2907 | 1.0 | 11368 | 0.1955 | 0.95 | 0.9315 | | 0.191 | 2.0 | 22736 | 0.1358 | 0.95 | 0.9333 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3