pratap18 commited on
Commit
ea2f38e
·
1 Parent(s): 453cec3

pratap16/MlpPolicy-LunarLander-v2

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: MlpPolicy
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 273.14 +/- 21.98
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **MlpPolicy** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc365b78040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc365b780d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc365b78160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc365b781f0>", "_build": "<function ActorCriticPolicy._build at 0x7fc365b78280>", "forward": "<function ActorCriticPolicy.forward at 0x7fc365b78310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc365b783a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc365b78430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc365b784c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc365b78550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc365b785e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc365b73450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673160766115612902, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFrkjr2pgjW87i3IvYcv373MJBU8qMpSPgAAgD8AAIA/mmNqvZHEgD1m8Fi+stzovYb7lDv3TQK+AAAAAAAAAAAApAq9KvKyP9306r6VnSW+aH78OzIgp70AAAAAAAAAAKaMgL1SkPu72pJbvf3avDw5W1C9FiqcPQAAgD8AAIA/TcoGPhtk4j3mjU++wUFYviRYsz3RDEW9AAAAAAAAAAAzdqo9ySkxPVN5c74gk1W+MZZauw14pr0AAAAAAAAAAE0JdD0UxZo9PrSVva1Ip75Y9C4+frfHvQAAAAAAAAAAZjdDPdsnsD84EOA+KVeMviNV7DwqBE8+AAAAAAAAAABNIeG9i6ZjP0uVAbzGl+a+4AZjvsOgXT0AAAAAAAAAAE1T6r1BmIC8shoavQxITT09xgm94EvVvAAAgD8AAIA/gFSCvTEYyj6Cuzo+RR3lviilHT0VTbk9AAAAAAAAAABm1Hu8rqWkutAzMLikjRuzP4hvuuIsSjcAAIA/AACAPxqM7j29YlU+EED5vq7/cL5Ogey91mZYvQAAAAAAAAAAZgP4vAr1V7txNUc7NVVePH0Xgbxr4EE9AACAPwAAgD/jZK2+2mZbveYRU7ywAr+8vyiCPo7wyL0AAAAAAAAAACA2Bj7+PLg91kpgvibzT76qBMs9MnRtvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPiMRGgGkckCUhpRSlIwBbJRNCwGMAXSUR0CSTrMKCxu9dX2UKGgGaAloD0MIRYR/EfRecUCUhpRSlGgVS81oFkdAkk8BuGbkO3V9lChoBmgJaA9DCH2zzY0pfnFAlIaUUpRoFUv/aBZHQJJP4XgtOEd1fZQoaAZoCWgPQwhUq6+uii1xQJSGlFKUaBVL7GgWR0CSUAsniNsFdX2UKGgGaAloD0MI+fauQd/ic0CUhpRSlGgVS9RoFkdAklBNFOO803V9lChoBmgJaA9DCEzChTwCX3NAlIaUUpRoFUv1aBZHQJJSC1NQCS11fZQoaAZoCWgPQwi30muzMT1yQJSGlFKUaBVL2WgWR0CSUkfjS5RTdX2UKGgGaAloD0MIUyEeidflcECUhpRSlGgVTQMBaBZHQJJTDeKsMiN1fZQoaAZoCWgPQwiZRpOLcRFzQJSGlFKUaBVL1mgWR0CSU9/etSyddX2UKGgGaAloD0MIIHwo0RKsb0CUhpRSlGgVS/xoFkdAklTSVv/BFnV9lChoBmgJaA9DCOAPP/99N3BAlIaUUpRoFUvnaBZHQJJVb1K5Cnh1fZQoaAZoCWgPQwgZBFYOLWpaQJSGlFKUaBVN6ANoFkdAklWQ8r7O3XV9lChoBmgJaA9DCFd6bTZWGnFAlIaUUpRoFUvNaBZHQJJVnLB9Cu51fZQoaAZoCWgPQwg6WWq935NvQJSGlFKUaBVL7WgWR0CSVbt1p0wKdX2UKGgGaAloD0MIxhSscbbSb0CUhpRSlGgVS+ZoFkdAklYMyad+X3V9lChoBmgJaA9DCAx1WOFWdXFAlIaUUpRoFU04AWgWR0CSVp7jkuHvdX2UKGgGaAloD0MIxSCwcug/b0CUhpRSlGgVS99oFkdAklbqW9lEqnV9lChoBmgJaA9DCIC4q1fRa3NAlIaUUpRoFUvxaBZHQJJXo5jpcHJ1fZQoaAZoCWgPQwhvgQTFD0BzQJSGlFKUaBVNLwFoFkdAklfSIP9UCXV9lChoBmgJaA9DCCQofow5oHJAlIaUUpRoFU0gAWgWR0CSWSf/3nIRdX2UKGgGaAloD0MI4pNOJJgAckCUhpRSlGgVS9NoFkdAklmGr0aqCHV9lChoBmgJaA9DCAx5BDcSonFAlIaUUpRoFUvzaBZHQJJZkEC/47B1fZQoaAZoCWgPQwh4tdyZyR1xQJSGlFKUaBVL9GgWR0CSWc+kxh2GdX2UKGgGaAloD0MIHeVgNoE/cUCUhpRSlGgVS/NoFkdAkltRKL8763V9lChoBmgJaA9DCGmtaHOc329AlIaUUpRoFUv0aBZHQJJc3Uc4o7V1fZQoaAZoCWgPQwg8pBggkQJyQJSGlFKUaBVL5GgWR0CSXQ1O0svqdX2UKGgGaAloD0MIf6SIDOsRcECUhpRSlGgVS/doFkdAkl1Tl1bJOnV9lChoBmgJaA9DCBQktrtHWnFAlIaUUpRoFUvNaBZHQJJeH2M85jp1fZQoaAZoCWgPQwjDLLRzmqdwQJSGlFKUaBVNLQFoFkdAkl5AeRxLkHV9lChoBmgJaA9DCDPEsS4umHJAlIaUUpRoFU0lAWgWR0CSXqpi7TUidX2UKGgGaAloD0MIpIy4ALQ6cUCUhpRSlGgVS9doFkdAkl6/VVghKXV9lChoBmgJaA9DCErUCz6NNnJAlIaUUpRoFU0BAWgWR0CSXsUxVQyidX2UKGgGaAloD0MIkNlZ9I4fcUCUhpRSlGgVTT8BaBZHQJJfc6T4cm11fZQoaAZoCWgPQwjX9+EgobFtQJSGlFKUaBVNEgFoFkdAkl+L9AHE/HV9lChoBmgJaA9DCLD+z2E+329AlIaUUpRoFUvgaBZHQJJgS8scyWR1fZQoaAZoCWgPQwgydVd2waRuQJSGlFKUaBVL1mgWR0CSYGWUbDMvdX2UKGgGaAloD0MIOey+Y3hsOECUhpRSlGgVTegDaBZHQJJghq33HrB1fZQoaAZoCWgPQwgTZW8pZ99xQJSGlFKUaBVL4GgWR0CSYKjd56dEdX2UKGgGaAloD0MIhH6mXvd+cUCUhpRSlGgVS/doFkdAkmFc6zVtoHV9lChoBmgJaA9DCJfhP91AnXBAlIaUUpRoFUvTaBZHQJJhkpUgjhV1fZQoaAZoCWgPQwgWa7jIPTBvQJSGlFKUaBVL8GgWR0CShCoIOYpldX2UKGgGaAloD0MIW3wKgPHsRUCUhpRSlGgVS7xoFkdAkoRBIJ7b+XV9lChoBmgJaA9DCPc+VYUGIh9AlIaUUpRoFUuCaBZHQJKEQYXO4Xp1fZQoaAZoCWgPQwh0et6NBbRwQJSGlFKUaBVL1WgWR0CShJC9h7VsdX2UKGgGaAloD0MImG2nrdE2cECUhpRSlGgVS81oFkdAkoTLGWD6FnV9lChoBmgJaA9DCIQR+wSQKHFAlIaUUpRoFU0EAWgWR0CShOg9vCMxdX2UKGgGaAloD0MI0LhwICQeb0CUhpRSlGgVS/loFkdAkoXpC0F8onV9lChoBmgJaA9DCP4KmSuDdnFAlIaUUpRoFUvIaBZHQJKGLqOcUdt1fZQoaAZoCWgPQwhbJsPxfElyQJSGlFKUaBVNHAFoFkdAkoZxEroW6HV9lChoBmgJaA9DCKd6Mv+oMnNAlIaUUpRoFUv6aBZHQJKGsfCAMDx1fZQoaAZoCWgPQwiYh0z5EDNyQJSGlFKUaBVL1mgWR0CSht+FUQ05dX2UKGgGaAloD0MIZcbbSm/Yc0CUhpRSlGgVTUoBaBZHQJKHAtSQ5m11fZQoaAZoCWgPQwgl7NtJRBpxQJSGlFKUaBVNGgFoFkdAkoeF6E8JU3V9lChoBmgJaA9DCCjTaHLxnHJAlIaUUpRoFUv3aBZHQJKHiZtvXK91fZQoaAZoCWgPQwgOT6+U5cNxQJSGlFKUaBVNBAFoFkdAkojQMH8jzXV9lChoBmgJaA9DCMIyNnSz53FAlIaUUpRoFU0CAWgWR0CSiQDwYtQLdX2UKGgGaAloD0MIv2N47GeYcUCUhpRSlGgVS/NoFkdAkosFsxfv4XV9lChoBmgJaA9DCLHAV3QrqXJAlIaUUpRoFU0BAWgWR0CSiyHgP3BYdX2UKGgGaAloD0MID7qEQ+8AckCUhpRSlGgVTQcBaBZHQJKL9a6jFhp1fZQoaAZoCWgPQwj0a+unf+FxQJSGlFKUaBVLxWgWR0CSjFtlI3BIdX2UKGgGaAloD0MIJA1ua8sncECUhpRSlGgVTQ8BaBZHQJKMYnXumaZ1fZQoaAZoCWgPQwjjNEQV/gpyQJSGlFKUaBVL7GgWR0CSjG9WIXTFdX2UKGgGaAloD0MIUb01sFWfbUCUhpRSlGgVS91oFkdAko1F8w5/9nV9lChoBmgJaA9DCDblCu8ylHJAlIaUUpRoFU0FAWgWR0CSjXy925hCdX2UKGgGaAloD0MIdHrejQXycECUhpRSlGgVS/JoFkdAko2BusLfDXV9lChoBmgJaA9DCFor2hxnAnFAlIaUUpRoFUvxaBZHQJKOj668QI51fZQoaAZoCWgPQwjO+pRj8jVwQJSGlFKUaBVNIQFoFkdAko6uEqUeMnV9lChoBmgJaA9DCKvLKQHxCHNAlIaUUpRoFU1+AWgWR0CSjyJp35erdX2UKGgGaAloD0MIIzFBDV/GbkCUhpRSlGgVTRgBaBZHQJKPrGhmGud1fZQoaAZoCWgPQwjqruyCgR9xQJSGlFKUaBVL5mgWR0CSj7PGhmGudX2UKGgGaAloD0MIxCXHndKrcUCUhpRSlGgVTQoBaBZHQJKQ6MtK7I11fZQoaAZoCWgPQwiLqfQTTulxQJSGlFKUaBVL7WgWR0CSkj17Y02tdX2UKGgGaAloD0MIQN8WLNXFb0CUhpRSlGgVS+ZoFkdAkpLqT0QK8nV9lChoBmgJaA9DCGXCL/Xza3FAlIaUUpRoFU0TAWgWR0CSk6LkjopydX2UKGgGaAloD0MImnlyTcEIcUCUhpRSlGgVS/hoFkdAkpPy57PY4HV9lChoBmgJaA9DCL8PBwnRunFAlIaUUpRoFUv/aBZHQJKUOVpsXSB1fZQoaAZoCWgPQwiwrDQpBTVqQJSGlFKUaBVNKwJoFkdAkpRUehf0E3V9lChoBmgJaA9DCGfXvRVJI3NAlIaUUpRoFU0GAWgWR0CSlHSsKb8WdX2UKGgGaAloD0MI5X0czZH4b0CUhpRSlGgVS+toFkdAkpSseOn2qXV9lChoBmgJaA9DCJzAdFp313FAlIaUUpRoFU0FAWgWR0CSlVM6ij+KdX2UKGgGaAloD0MIVn4ZjJEcb0CUhpRSlGgVTRcBaBZHQJKVn9wWFex1fZQoaAZoCWgPQwjWOJuOwOlxQJSGlFKUaBVL+GgWR0CSlgYVZcLSdX2UKGgGaAloD0MIMiB7vfu7c0CUhpRSlGgVTRIBaBZHQJKXCkoF3ZB1fZQoaAZoCWgPQwg74/viEgpzQJSGlFKUaBVNBwFoFkdAkpdNiYsunXV9lChoBmgJaA9DCAcoDTWKvnBAlIaUUpRoFU0tAWgWR0CSmFtKqXF+dX2UKGgGaAloD0MIgXozar6dcECUhpRSlGgVTQIBaBZHQJKYapxWDHx1fZQoaAZoCWgPQwi932jHDYpwQJSGlFKUaBVL32gWR0CSmbTKDCgsdX2UKGgGaAloD0MIbvlISnr/cUCUhpRSlGgVTQ0BaBZHQJKZ25jH4oJ1fZQoaAZoCWgPQwifBDbn4K5zQJSGlFKUaBVL4mgWR0CSmlfnfVI7dX2UKGgGaAloD0MIbjE/NzR4cECUhpRSlGgVS/xoFkdAkprDL8rI53V9lChoBmgJaA9DCATLETJQJ3FAlIaUUpRoFUv3aBZHQJKa2YhMajx1fZQoaAZoCWgPQwhTIR6JF6pvQJSGlFKUaBVL92gWR0CSm0619fCzdX2UKGgGaAloD0MIVPzfEZW6cECUhpRSlGgVTSwBaBZHQJKbTUI9kjJ1fZQoaAZoCWgPQwgracU3lM9yQJSGlFKUaBVNAgFoFkdAkptnZkCmuXV9lChoBmgJaA9DCItuvaZHxXFAlIaUUpRoFUvjaBZHQJKbdDD0lJJ1fZQoaAZoCWgPQwgDIsSVs+FwQJSGlFKUaBVL62gWR0CSm94CIUJwdX2UKGgGaAloD0MIZ2FPOzwxckCUhpRSlGgVS/JoFkdAkpx0IHC40HV9lChoBmgJaA9DCMFu2LaouXBAlIaUUpRoFUv3aBZHQJKdyH/Lkjp1fZQoaAZoCWgPQwhIGtzWVk9xQJSGlFKUaBVL9WgWR0CSns/vfCQ+dX2UKGgGaAloD0MI7l7uk+MZckCUhpRSlGgVTSgBaBZHQJKe5eY2Kl51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_Lunar_Lander_agent_108.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2730d9c58dc5b5aad5513ae2100e48845a444254d6b363a061ecb12b191397e6
3
+ size 147138
ppo_Lunar_Lander_agent_108/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo_Lunar_Lander_agent_108/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc365b78040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc365b780d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc365b78160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc365b781f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc365b78280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc365b78310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc365b783a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc365b78430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc365b784c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc365b78550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc365b785e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc365b73450>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673160766115612902,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFrkjr2pgjW87i3IvYcv373MJBU8qMpSPgAAgD8AAIA/mmNqvZHEgD1m8Fi+stzovYb7lDv3TQK+AAAAAAAAAAAApAq9KvKyP9306r6VnSW+aH78OzIgp70AAAAAAAAAAKaMgL1SkPu72pJbvf3avDw5W1C9FiqcPQAAgD8AAIA/TcoGPhtk4j3mjU++wUFYviRYsz3RDEW9AAAAAAAAAAAzdqo9ySkxPVN5c74gk1W+MZZauw14pr0AAAAAAAAAAE0JdD0UxZo9PrSVva1Ip75Y9C4+frfHvQAAAAAAAAAAZjdDPdsnsD84EOA+KVeMviNV7DwqBE8+AAAAAAAAAABNIeG9i6ZjP0uVAbzGl+a+4AZjvsOgXT0AAAAAAAAAAE1T6r1BmIC8shoavQxITT09xgm94EvVvAAAgD8AAIA/gFSCvTEYyj6Cuzo+RR3lviilHT0VTbk9AAAAAAAAAABm1Hu8rqWkutAzMLikjRuzP4hvuuIsSjcAAIA/AACAPxqM7j29YlU+EED5vq7/cL5Ogey91mZYvQAAAAAAAAAAZgP4vAr1V7txNUc7NVVePH0Xgbxr4EE9AACAPwAAgD/jZK2+2mZbveYRU7ywAr+8vyiCPo7wyL0AAAAAAAAAACA2Bj7+PLg91kpgvibzT76qBMs9MnRtvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVRBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPiMRGgGkckCUhpRSlIwBbJRNCwGMAXSUR0CSTrMKCxu9dX2UKGgGaAloD0MIRYR/EfRecUCUhpRSlGgVS81oFkdAkk8BuGbkO3V9lChoBmgJaA9DCH2zzY0pfnFAlIaUUpRoFUv/aBZHQJJP4XgtOEd1fZQoaAZoCWgPQwhUq6+uii1xQJSGlFKUaBVL7GgWR0CSUAsniNsFdX2UKGgGaAloD0MI+fauQd/ic0CUhpRSlGgVS9RoFkdAklBNFOO803V9lChoBmgJaA9DCEzChTwCX3NAlIaUUpRoFUv1aBZHQJJSC1NQCS11fZQoaAZoCWgPQwi30muzMT1yQJSGlFKUaBVL2WgWR0CSUkfjS5RTdX2UKGgGaAloD0MIUyEeidflcECUhpRSlGgVTQMBaBZHQJJTDeKsMiN1fZQoaAZoCWgPQwiZRpOLcRFzQJSGlFKUaBVL1mgWR0CSU9/etSyddX2UKGgGaAloD0MIIHwo0RKsb0CUhpRSlGgVS/xoFkdAklTSVv/BFnV9lChoBmgJaA9DCOAPP/99N3BAlIaUUpRoFUvnaBZHQJJVb1K5Cnh1fZQoaAZoCWgPQwgZBFYOLWpaQJSGlFKUaBVN6ANoFkdAklWQ8r7O3XV9lChoBmgJaA9DCFd6bTZWGnFAlIaUUpRoFUvNaBZHQJJVnLB9Cu51fZQoaAZoCWgPQwg6WWq935NvQJSGlFKUaBVL7WgWR0CSVbt1p0wKdX2UKGgGaAloD0MIxhSscbbSb0CUhpRSlGgVS+ZoFkdAklYMyad+X3V9lChoBmgJaA9DCAx1WOFWdXFAlIaUUpRoFU04AWgWR0CSVp7jkuHvdX2UKGgGaAloD0MIxSCwcug/b0CUhpRSlGgVS99oFkdAklbqW9lEqnV9lChoBmgJaA9DCIC4q1fRa3NAlIaUUpRoFUvxaBZHQJJXo5jpcHJ1fZQoaAZoCWgPQwhvgQTFD0BzQJSGlFKUaBVNLwFoFkdAklfSIP9UCXV9lChoBmgJaA9DCCQofow5oHJAlIaUUpRoFU0gAWgWR0CSWSf/3nIRdX2UKGgGaAloD0MI4pNOJJgAckCUhpRSlGgVS9NoFkdAklmGr0aqCHV9lChoBmgJaA9DCAx5BDcSonFAlIaUUpRoFUvzaBZHQJJZkEC/47B1fZQoaAZoCWgPQwh4tdyZyR1xQJSGlFKUaBVL9GgWR0CSWc+kxh2GdX2UKGgGaAloD0MIHeVgNoE/cUCUhpRSlGgVS/NoFkdAkltRKL8763V9lChoBmgJaA9DCGmtaHOc329AlIaUUpRoFUv0aBZHQJJc3Uc4o7V1fZQoaAZoCWgPQwg8pBggkQJyQJSGlFKUaBVL5GgWR0CSXQ1O0svqdX2UKGgGaAloD0MIf6SIDOsRcECUhpRSlGgVS/doFkdAkl1Tl1bJOnV9lChoBmgJaA9DCBQktrtHWnFAlIaUUpRoFUvNaBZHQJJeH2M85jp1fZQoaAZoCWgPQwjDLLRzmqdwQJSGlFKUaBVNLQFoFkdAkl5AeRxLkHV9lChoBmgJaA9DCDPEsS4umHJAlIaUUpRoFU0lAWgWR0CSXqpi7TUidX2UKGgGaAloD0MIpIy4ALQ6cUCUhpRSlGgVS9doFkdAkl6/VVghKXV9lChoBmgJaA9DCErUCz6NNnJAlIaUUpRoFU0BAWgWR0CSXsUxVQyidX2UKGgGaAloD0MIkNlZ9I4fcUCUhpRSlGgVTT8BaBZHQJJfc6T4cm11fZQoaAZoCWgPQwjX9+EgobFtQJSGlFKUaBVNEgFoFkdAkl+L9AHE/HV9lChoBmgJaA9DCLD+z2E+329AlIaUUpRoFUvgaBZHQJJgS8scyWR1fZQoaAZoCWgPQwgydVd2waRuQJSGlFKUaBVL1mgWR0CSYGWUbDMvdX2UKGgGaAloD0MIOey+Y3hsOECUhpRSlGgVTegDaBZHQJJghq33HrB1fZQoaAZoCWgPQwgTZW8pZ99xQJSGlFKUaBVL4GgWR0CSYKjd56dEdX2UKGgGaAloD0MIhH6mXvd+cUCUhpRSlGgVS/doFkdAkmFc6zVtoHV9lChoBmgJaA9DCJfhP91AnXBAlIaUUpRoFUvTaBZHQJJhkpUgjhV1fZQoaAZoCWgPQwgWa7jIPTBvQJSGlFKUaBVL8GgWR0CShCoIOYpldX2UKGgGaAloD0MIW3wKgPHsRUCUhpRSlGgVS7xoFkdAkoRBIJ7b+XV9lChoBmgJaA9DCPc+VYUGIh9AlIaUUpRoFUuCaBZHQJKEQYXO4Xp1fZQoaAZoCWgPQwh0et6NBbRwQJSGlFKUaBVL1WgWR0CShJC9h7VsdX2UKGgGaAloD0MImG2nrdE2cECUhpRSlGgVS81oFkdAkoTLGWD6FnV9lChoBmgJaA9DCIQR+wSQKHFAlIaUUpRoFU0EAWgWR0CShOg9vCMxdX2UKGgGaAloD0MI0LhwICQeb0CUhpRSlGgVS/loFkdAkoXpC0F8onV9lChoBmgJaA9DCP4KmSuDdnFAlIaUUpRoFUvIaBZHQJKGLqOcUdt1fZQoaAZoCWgPQwhbJsPxfElyQJSGlFKUaBVNHAFoFkdAkoZxEroW6HV9lChoBmgJaA9DCKd6Mv+oMnNAlIaUUpRoFUv6aBZHQJKGsfCAMDx1fZQoaAZoCWgPQwiYh0z5EDNyQJSGlFKUaBVL1mgWR0CSht+FUQ05dX2UKGgGaAloD0MIZcbbSm/Yc0CUhpRSlGgVTUoBaBZHQJKHAtSQ5m11fZQoaAZoCWgPQwgl7NtJRBpxQJSGlFKUaBVNGgFoFkdAkoeF6E8JU3V9lChoBmgJaA9DCCjTaHLxnHJAlIaUUpRoFUv3aBZHQJKHiZtvXK91fZQoaAZoCWgPQwgOT6+U5cNxQJSGlFKUaBVNBAFoFkdAkojQMH8jzXV9lChoBmgJaA9DCMIyNnSz53FAlIaUUpRoFU0CAWgWR0CSiQDwYtQLdX2UKGgGaAloD0MIv2N47GeYcUCUhpRSlGgVS/NoFkdAkosFsxfv4XV9lChoBmgJaA9DCLHAV3QrqXJAlIaUUpRoFU0BAWgWR0CSiyHgP3BYdX2UKGgGaAloD0MID7qEQ+8AckCUhpRSlGgVTQcBaBZHQJKL9a6jFhp1fZQoaAZoCWgPQwj0a+unf+FxQJSGlFKUaBVLxWgWR0CSjFtlI3BIdX2UKGgGaAloD0MIJA1ua8sncECUhpRSlGgVTQ8BaBZHQJKMYnXumaZ1fZQoaAZoCWgPQwjjNEQV/gpyQJSGlFKUaBVL7GgWR0CSjG9WIXTFdX2UKGgGaAloD0MIUb01sFWfbUCUhpRSlGgVS91oFkdAko1F8w5/9nV9lChoBmgJaA9DCDblCu8ylHJAlIaUUpRoFU0FAWgWR0CSjXy925hCdX2UKGgGaAloD0MIdHrejQXycECUhpRSlGgVS/JoFkdAko2BusLfDXV9lChoBmgJaA9DCFor2hxnAnFAlIaUUpRoFUvxaBZHQJKOj668QI51fZQoaAZoCWgPQwjO+pRj8jVwQJSGlFKUaBVNIQFoFkdAko6uEqUeMnV9lChoBmgJaA9DCKvLKQHxCHNAlIaUUpRoFU1+AWgWR0CSjyJp35erdX2UKGgGaAloD0MIIzFBDV/GbkCUhpRSlGgVTRgBaBZHQJKPrGhmGud1fZQoaAZoCWgPQwjqruyCgR9xQJSGlFKUaBVL5mgWR0CSj7PGhmGudX2UKGgGaAloD0MIxCXHndKrcUCUhpRSlGgVTQoBaBZHQJKQ6MtK7I11fZQoaAZoCWgPQwiLqfQTTulxQJSGlFKUaBVL7WgWR0CSkj17Y02tdX2UKGgGaAloD0MIQN8WLNXFb0CUhpRSlGgVS+ZoFkdAkpLqT0QK8nV9lChoBmgJaA9DCGXCL/Xza3FAlIaUUpRoFU0TAWgWR0CSk6LkjopydX2UKGgGaAloD0MImnlyTcEIcUCUhpRSlGgVS/hoFkdAkpPy57PY4HV9lChoBmgJaA9DCL8PBwnRunFAlIaUUpRoFUv/aBZHQJKUOVpsXSB1fZQoaAZoCWgPQwiwrDQpBTVqQJSGlFKUaBVNKwJoFkdAkpRUehf0E3V9lChoBmgJaA9DCGfXvRVJI3NAlIaUUpRoFU0GAWgWR0CSlHSsKb8WdX2UKGgGaAloD0MI5X0czZH4b0CUhpRSlGgVS+toFkdAkpSseOn2qXV9lChoBmgJaA9DCJzAdFp313FAlIaUUpRoFU0FAWgWR0CSlVM6ij+KdX2UKGgGaAloD0MIVn4ZjJEcb0CUhpRSlGgVTRcBaBZHQJKVn9wWFex1fZQoaAZoCWgPQwjWOJuOwOlxQJSGlFKUaBVL+GgWR0CSlgYVZcLSdX2UKGgGaAloD0MIMiB7vfu7c0CUhpRSlGgVTRIBaBZHQJKXCkoF3ZB1fZQoaAZoCWgPQwg74/viEgpzQJSGlFKUaBVNBwFoFkdAkpdNiYsunXV9lChoBmgJaA9DCAcoDTWKvnBAlIaUUpRoFU0tAWgWR0CSmFtKqXF+dX2UKGgGaAloD0MIgXozar6dcECUhpRSlGgVTQIBaBZHQJKYapxWDHx1fZQoaAZoCWgPQwi932jHDYpwQJSGlFKUaBVL32gWR0CSmbTKDCgsdX2UKGgGaAloD0MIbvlISnr/cUCUhpRSlGgVTQ0BaBZHQJKZ25jH4oJ1fZQoaAZoCWgPQwifBDbn4K5zQJSGlFKUaBVL4mgWR0CSmlfnfVI7dX2UKGgGaAloD0MIbjE/NzR4cECUhpRSlGgVS/xoFkdAkprDL8rI53V9lChoBmgJaA9DCATLETJQJ3FAlIaUUpRoFUv3aBZHQJKa2YhMajx1fZQoaAZoCWgPQwhTIR6JF6pvQJSGlFKUaBVL92gWR0CSm0619fCzdX2UKGgGaAloD0MIVPzfEZW6cECUhpRSlGgVTSwBaBZHQJKbTUI9kjJ1fZQoaAZoCWgPQwgracU3lM9yQJSGlFKUaBVNAgFoFkdAkptnZkCmuXV9lChoBmgJaA9DCItuvaZHxXFAlIaUUpRoFUvjaBZHQJKbdDD0lJJ1fZQoaAZoCWgPQwgDIsSVs+FwQJSGlFKUaBVL62gWR0CSm94CIUJwdX2UKGgGaAloD0MIZ2FPOzwxckCUhpRSlGgVS/JoFkdAkpx0IHC40HV9lChoBmgJaA9DCMFu2LaouXBAlIaUUpRoFUv3aBZHQJKdyH/Lkjp1fZQoaAZoCWgPQwhIGtzWVk9xQJSGlFKUaBVL9WgWR0CSns/vfCQ+dX2UKGgGaAloD0MI7l7uk+MZckCUhpRSlGgVTSgBaBZHQJKe5eY2Kl51ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 310,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 5,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_Lunar_Lander_agent_108/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60c611b4b6a30d34486a883da291ec6fa3acead6393cf14a998bfc04fd98e719
3
+ size 87929
ppo_Lunar_Lander_agent_108/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f212e74cb7126fc58380aacbf614b561320da85cb4e26fe45f6ac4af6b64f2a9
3
+ size 43201
ppo_Lunar_Lander_agent_108/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_Lunar_Lander_agent_108/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (215 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 273.13840054877585, "std_reward": 21.977228638896644, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T07:17:27.273879"}