pranaydeeps commited on
Commit
3b2607f
·
verified ·
1 Parent(s): f6ce644

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: pos_final_xlm_fr
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # pos_final_xlm_fr
19
+
20
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1022
23
+ - Precision: 0.9744
24
+ - Recall: 0.9746
25
+ - F1: 0.9745
26
+ - Accuracy: 0.9769
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 256
47
+ - eval_batch_size: 256
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 4
50
+ - total_train_batch_size: 1024
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_steps: 500
54
+ - num_epochs: 40.0
55
+ - mixed_precision_training: Native AMP
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | No log | 0.95 | 14 | 3.5537 | 0.0 | 0.0 | 0.0 | 0.0026 |
62
+ | No log | 1.95 | 28 | 3.4536 | 0.0153 | 0.0024 | 0.0042 | 0.0049 |
63
+ | No log | 2.95 | 42 | 3.1247 | 0.2395 | 0.1816 | 0.2066 | 0.2843 |
64
+ | No log | 3.95 | 56 | 2.5988 | 0.4342 | 0.3539 | 0.3900 | 0.4543 |
65
+ | No log | 4.95 | 70 | 2.0168 | 0.5125 | 0.4086 | 0.4547 | 0.5148 |
66
+ | No log | 5.95 | 84 | 1.4838 | 0.5959 | 0.5180 | 0.5543 | 0.6086 |
67
+ | No log | 6.95 | 98 | 0.9300 | 0.7905 | 0.7619 | 0.7759 | 0.7981 |
68
+ | No log | 7.95 | 112 | 0.4874 | 0.9111 | 0.9078 | 0.9094 | 0.9147 |
69
+ | No log | 8.95 | 126 | 0.2940 | 0.9372 | 0.9368 | 0.9370 | 0.9396 |
70
+ | No log | 9.95 | 140 | 0.2086 | 0.9471 | 0.9482 | 0.9476 | 0.9490 |
71
+ | No log | 10.95 | 154 | 0.1688 | 0.9594 | 0.9610 | 0.9602 | 0.9627 |
72
+ | No log | 11.95 | 168 | 0.1450 | 0.9624 | 0.9641 | 0.9632 | 0.9659 |
73
+ | No log | 12.95 | 182 | 0.1334 | 0.9651 | 0.9669 | 0.9660 | 0.9686 |
74
+ | No log | 13.95 | 196 | 0.1213 | 0.9674 | 0.9685 | 0.9679 | 0.9702 |
75
+ | No log | 14.95 | 210 | 0.1155 | 0.9684 | 0.9696 | 0.9690 | 0.9718 |
76
+ | No log | 15.95 | 224 | 0.1093 | 0.9707 | 0.9712 | 0.9709 | 0.9734 |
77
+ | No log | 16.95 | 238 | 0.1059 | 0.9710 | 0.9716 | 0.9713 | 0.9739 |
78
+ | No log | 17.95 | 252 | 0.1046 | 0.9711 | 0.9716 | 0.9714 | 0.9740 |
79
+ | No log | 18.95 | 266 | 0.1014 | 0.9719 | 0.9724 | 0.9722 | 0.9745 |
80
+ | No log | 19.95 | 280 | 0.1003 | 0.9715 | 0.9722 | 0.9718 | 0.9742 |
81
+ | No log | 20.95 | 294 | 0.0987 | 0.9724 | 0.9730 | 0.9727 | 0.9751 |
82
+ | No log | 21.95 | 308 | 0.0971 | 0.9722 | 0.9728 | 0.9725 | 0.9750 |
83
+ | No log | 22.95 | 322 | 0.0968 | 0.9724 | 0.9735 | 0.9730 | 0.9754 |
84
+ | No log | 23.95 | 336 | 0.0954 | 0.9728 | 0.9736 | 0.9732 | 0.9756 |
85
+ | No log | 24.95 | 350 | 0.0967 | 0.9722 | 0.9731 | 0.9727 | 0.9752 |
86
+ | No log | 25.95 | 364 | 0.0965 | 0.9735 | 0.9744 | 0.9739 | 0.9763 |
87
+ | No log | 26.95 | 378 | 0.0963 | 0.9725 | 0.9735 | 0.9730 | 0.9757 |
88
+ | No log | 27.95 | 392 | 0.0972 | 0.9728 | 0.9738 | 0.9733 | 0.9759 |
89
+ | No log | 28.95 | 406 | 0.0987 | 0.9736 | 0.9745 | 0.9740 | 0.9766 |
90
+ | No log | 29.95 | 420 | 0.0994 | 0.9737 | 0.9742 | 0.9740 | 0.9764 |
91
+ | No log | 30.95 | 434 | 0.0985 | 0.9737 | 0.9741 | 0.9739 | 0.9764 |
92
+ | No log | 31.95 | 448 | 0.1022 | 0.9744 | 0.9746 | 0.9745 | 0.9769 |
93
+ | No log | 32.95 | 462 | 0.1020 | 0.9740 | 0.9744 | 0.9742 | 0.9767 |
94
+ | No log | 33.95 | 476 | 0.1055 | 0.9730 | 0.9738 | 0.9734 | 0.9758 |
95
+ | No log | 34.95 | 490 | 0.1068 | 0.9732 | 0.9742 | 0.9737 | 0.9760 |
96
+ | 0.6768 | 35.95 | 504 | 0.1085 | 0.9737 | 0.9740 | 0.9739 | 0.9764 |
97
+ | 0.6768 | 36.95 | 518 | 0.1088 | 0.9735 | 0.9743 | 0.9739 | 0.9764 |
98
+ | 0.6768 | 37.95 | 532 | 0.1100 | 0.9739 | 0.9744 | 0.9742 | 0.9768 |
99
+ | 0.6768 | 38.95 | 546 | 0.1107 | 0.9739 | 0.9745 | 0.9742 | 0.9767 |
100
+ | 0.6768 | 39.95 | 560 | 0.1115 | 0.9740 | 0.9747 | 0.9744 | 0.9769 |
101
+
102
+
103
+ ### Framework versions
104
+
105
+ - Transformers 4.25.1
106
+ - Pytorch 1.12.0
107
+ - Datasets 2.18.0
108
+ - Tokenizers 0.13.2
all_results.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 39.95,
3
+ "eval_accuracy": 0.9768565163278611,
4
+ "eval_f1": 0.9745301568430197,
5
+ "eval_loss": 0.10217323899269104,
6
+ "eval_precision": 0.9744261895327216,
7
+ "eval_recall": 0.9746341463414634,
8
+ "eval_runtime": 2.1359,
9
+ "eval_samples": 1431,
10
+ "eval_samples_per_second": 776.71,
11
+ "eval_steps_per_second": 3.277,
12
+ "train_loss": 0.6079375518219812,
13
+ "train_runtime": 701.2451,
14
+ "train_samples": 14928,
15
+ "train_samples_per_second": 851.514,
16
+ "train_steps_per_second": 0.799
17
+ }
config.json ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlm-roberta-base",
3
+ "architectures": [
4
+ "XLMRobertaForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "finetuning_task": "pos",
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "id2label": {
15
+ "0": "VER:pper",
16
+ "1": "#",
17
+ "2": "PRO:PER",
18
+ "3": "VER:cond",
19
+ "4": "VER:pres",
20
+ "5": "VER:subp",
21
+ "6": "SENT",
22
+ "7": "VER:",
23
+ "8": "VER:simp",
24
+ "9": "PUN:cit",
25
+ "10": "DET:ART",
26
+ "11": "SYM",
27
+ "12": "NOM",
28
+ "13": "VER:impf",
29
+ "14": "PRP:det",
30
+ "15": "PUN",
31
+ "16": "PRO:IND",
32
+ "17": "INT",
33
+ "18": "PRO",
34
+ "19": "FW",
35
+ "20": "PRO:DEM",
36
+ "21": "VER:subi",
37
+ "22": "DET:art",
38
+ "23": "PRO:POS",
39
+ "24": "PRP",
40
+ "25": "VER:futu",
41
+ "26": "DET:POS",
42
+ "27": "PRO:REL",
43
+ "28": "ADV",
44
+ "29": "NUM",
45
+ "30": "VER:impe",
46
+ "31": "@",
47
+ "32": "futu",
48
+ "33": "VER:infi",
49
+ "34": "NAM",
50
+ "35": "ABR",
51
+ "36": "ADJ",
52
+ "37": "KON",
53
+ "38": "VER:ppre"
54
+ },
55
+ "initializer_range": 0.02,
56
+ "intermediate_size": 3072,
57
+ "label2id": {
58
+ "#": 1,
59
+ "@": 31,
60
+ "ABR": 35,
61
+ "ADJ": 36,
62
+ "ADV": 28,
63
+ "DET:ART": 10,
64
+ "DET:POS": 26,
65
+ "DET:art": 22,
66
+ "FW": 19,
67
+ "INT": 17,
68
+ "KON": 37,
69
+ "NAM": 34,
70
+ "NOM": 12,
71
+ "NUM": 29,
72
+ "PRO": 18,
73
+ "PRO:DEM": 20,
74
+ "PRO:IND": 16,
75
+ "PRO:PER": 2,
76
+ "PRO:POS": 23,
77
+ "PRO:REL": 27,
78
+ "PRP": 24,
79
+ "PRP:det": 14,
80
+ "PUN": 15,
81
+ "PUN:cit": 9,
82
+ "SENT": 6,
83
+ "SYM": 11,
84
+ "VER:": 7,
85
+ "VER:cond": 3,
86
+ "VER:futu": 25,
87
+ "VER:impe": 30,
88
+ "VER:impf": 13,
89
+ "VER:infi": 33,
90
+ "VER:pper": 0,
91
+ "VER:ppre": 38,
92
+ "VER:pres": 4,
93
+ "VER:simp": 8,
94
+ "VER:subi": 21,
95
+ "VER:subp": 5,
96
+ "futu": 32
97
+ },
98
+ "layer_norm_eps": 1e-05,
99
+ "max_position_embeddings": 514,
100
+ "model_type": "xlm-roberta",
101
+ "num_attention_heads": 12,
102
+ "num_hidden_layers": 12,
103
+ "output_past": true,
104
+ "pad_token_id": 1,
105
+ "position_embedding_type": "absolute",
106
+ "torch_dtype": "float32",
107
+ "transformers_version": "4.25.1",
108
+ "type_vocab_size": 1,
109
+ "use_cache": true,
110
+ "vocab_size": 250002
111
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 39.95,
3
+ "eval_accuracy": 0.9768565163278611,
4
+ "eval_f1": 0.9745301568430197,
5
+ "eval_loss": 0.10217323899269104,
6
+ "eval_precision": 0.9744261895327216,
7
+ "eval_recall": 0.9746341463414634,
8
+ "eval_runtime": 2.1359,
9
+ "eval_samples": 1431,
10
+ "eval_samples_per_second": 776.71,
11
+ "eval_steps_per_second": 3.277
12
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1442d2f613e0213897cfa0c36f5bde79edc0e93e3cc2722b5d0d7e067246222
3
+ size 1110003249
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2c509a525eb51aebb33fb59c24ee923c1d4c1db23c3ae81fe05ccf354084f7b
3
+ size 17082758
tokenizer_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "__type": "AddedToken",
7
+ "content": "<mask>",
8
+ "lstrip": true,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "model_max_length": 512,
14
+ "name_or_path": "xlm-roberta-base",
15
+ "pad_token": "<pad>",
16
+ "sep_token": "</s>",
17
+ "special_tokens_map_file": null,
18
+ "token": null,
19
+ "tokenizer_class": "XLMRobertaTokenizer",
20
+ "unk_token": "<unk>"
21
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 39.95,
3
+ "train_loss": 0.6079375518219812,
4
+ "train_runtime": 701.2451,
5
+ "train_samples": 14928,
6
+ "train_samples_per_second": 851.514,
7
+ "train_steps_per_second": 0.799
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,511 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.9745301568430197,
3
+ "best_model_checkpoint": "models/pos_final_xlm_fr/checkpoint-448",
4
+ "epoch": 39.94915254237288,
5
+ "global_step": 560,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.95,
12
+ "eval_accuracy": 0.0025780833283944762,
13
+ "eval_f1": 0.0,
14
+ "eval_loss": 3.5537023544311523,
15
+ "eval_precision": 0.0,
16
+ "eval_recall": 0.0,
17
+ "eval_runtime": 2.1805,
18
+ "eval_samples_per_second": 760.825,
19
+ "eval_steps_per_second": 3.21,
20
+ "step": 14
21
+ },
22
+ {
23
+ "epoch": 1.95,
24
+ "eval_accuracy": 0.004948734664849168,
25
+ "eval_f1": 0.004161179878851726,
26
+ "eval_loss": 3.453566551208496,
27
+ "eval_precision": 0.01528046421663443,
28
+ "eval_recall": 0.0024085365853658536,
29
+ "eval_runtime": 2.2293,
30
+ "eval_samples_per_second": 744.195,
31
+ "eval_steps_per_second": 3.14,
32
+ "step": 28
33
+ },
34
+ {
35
+ "epoch": 2.95,
36
+ "eval_accuracy": 0.2843003615243288,
37
+ "eval_f1": 0.2065520889335946,
38
+ "eval_loss": 3.1247434616088867,
39
+ "eval_precision": 0.23953179679015324,
40
+ "eval_recall": 0.18155487804878048,
41
+ "eval_runtime": 2.0115,
42
+ "eval_samples_per_second": 824.764,
43
+ "eval_steps_per_second": 3.48,
44
+ "step": 42
45
+ },
46
+ {
47
+ "epoch": 3.95,
48
+ "eval_accuracy": 0.45430569548983585,
49
+ "eval_f1": 0.3899751394208157,
50
+ "eval_loss": 2.598811149597168,
51
+ "eval_precision": 0.4342361215023193,
52
+ "eval_recall": 0.3539024390243902,
53
+ "eval_runtime": 2.3441,
54
+ "eval_samples_per_second": 707.74,
55
+ "eval_steps_per_second": 2.986,
56
+ "step": 56
57
+ },
58
+ {
59
+ "epoch": 4.95,
60
+ "eval_accuracy": 0.5148462039945475,
61
+ "eval_f1": 0.454724342663274,
62
+ "eval_loss": 2.0168328285217285,
63
+ "eval_precision": 0.5125430210325048,
64
+ "eval_recall": 0.4086280487804878,
65
+ "eval_runtime": 2.0095,
66
+ "eval_samples_per_second": 825.594,
67
+ "eval_steps_per_second": 3.484,
68
+ "step": 70
69
+ },
70
+ {
71
+ "epoch": 5.95,
72
+ "eval_accuracy": 0.6085758312096249,
73
+ "eval_f1": 0.5542561693660192,
74
+ "eval_loss": 1.4837758541107178,
75
+ "eval_precision": 0.5959454245729718,
76
+ "eval_recall": 0.5180182926829269,
77
+ "eval_runtime": 2.0097,
78
+ "eval_samples_per_second": 825.481,
79
+ "eval_steps_per_second": 3.483,
80
+ "step": 84
81
+ },
82
+ {
83
+ "epoch": 6.95,
84
+ "eval_accuracy": 0.7980501392757661,
85
+ "eval_f1": 0.7759372816890475,
86
+ "eval_loss": 0.9300474524497986,
87
+ "eval_precision": 0.7904792029100111,
88
+ "eval_recall": 0.7619207317073171,
89
+ "eval_runtime": 2.0866,
90
+ "eval_samples_per_second": 795.072,
91
+ "eval_steps_per_second": 3.355,
92
+ "step": 98
93
+ },
94
+ {
95
+ "epoch": 7.95,
96
+ "eval_accuracy": 0.9146565518876312,
97
+ "eval_f1": 0.909426874150543,
98
+ "eval_loss": 0.4873865842819214,
99
+ "eval_precision": 0.911054676743261,
100
+ "eval_recall": 0.9078048780487805,
101
+ "eval_runtime": 2.0506,
102
+ "eval_samples_per_second": 809.029,
103
+ "eval_steps_per_second": 3.414,
104
+ "step": 112
105
+ },
106
+ {
107
+ "epoch": 8.95,
108
+ "eval_accuracy": 0.9395780240621111,
109
+ "eval_f1": 0.9370149572323785,
110
+ "eval_loss": 0.2940390408039093,
111
+ "eval_precision": 0.9372007197974808,
112
+ "eval_recall": 0.936829268292683,
113
+ "eval_runtime": 2.4026,
114
+ "eval_samples_per_second": 690.513,
115
+ "eval_steps_per_second": 2.914,
116
+ "step": 126
117
+ },
118
+ {
119
+ "epoch": 9.95,
120
+ "eval_accuracy": 0.9490309962662241,
121
+ "eval_f1": 0.9476378372613843,
122
+ "eval_loss": 0.20862668752670288,
123
+ "eval_precision": 0.9470751240902585,
124
+ "eval_recall": 0.9482012195121952,
125
+ "eval_runtime": 2.1173,
126
+ "eval_samples_per_second": 783.547,
127
+ "eval_steps_per_second": 3.306,
128
+ "step": 140
129
+ },
130
+ {
131
+ "epoch": 10.95,
132
+ "eval_accuracy": 0.96272150773425,
133
+ "eval_f1": 0.9601852133914156,
134
+ "eval_loss": 0.16879160702228546,
135
+ "eval_precision": 0.9593961161502405,
136
+ "eval_recall": 0.9609756097560975,
137
+ "eval_runtime": 2.6297,
138
+ "eval_samples_per_second": 630.882,
139
+ "eval_steps_per_second": 2.662,
140
+ "step": 154
141
+ },
142
+ {
143
+ "epoch": 11.95,
144
+ "eval_accuracy": 0.9659218870384638,
145
+ "eval_f1": 0.9632472774350773,
146
+ "eval_loss": 0.1449553668498993,
147
+ "eval_precision": 0.9624410287627454,
148
+ "eval_recall": 0.9640548780487805,
149
+ "eval_runtime": 2.1659,
150
+ "eval_samples_per_second": 765.976,
151
+ "eval_steps_per_second": 3.232,
152
+ "step": 168
153
+ },
154
+ {
155
+ "epoch": 12.95,
156
+ "eval_accuracy": 0.9685592366502697,
157
+ "eval_f1": 0.9659930249912432,
158
+ "eval_loss": 0.13338540494441986,
159
+ "eval_precision": 0.9650670967349299,
160
+ "eval_recall": 0.9669207317073171,
161
+ "eval_runtime": 2.0965,
162
+ "eval_samples_per_second": 791.329,
163
+ "eval_steps_per_second": 3.339,
164
+ "step": 182
165
+ },
166
+ {
167
+ "epoch": 13.95,
168
+ "eval_accuracy": 0.9702483257274936,
169
+ "eval_f1": 0.9679444207447133,
170
+ "eval_loss": 0.12125352025032043,
171
+ "eval_precision": 0.9674138141064685,
172
+ "eval_recall": 0.9684756097560976,
173
+ "eval_runtime": 2.0848,
174
+ "eval_samples_per_second": 795.757,
175
+ "eval_steps_per_second": 3.358,
176
+ "step": 196
177
+ },
178
+ {
179
+ "epoch": 14.95,
180
+ "eval_accuracy": 0.9718188822378948,
181
+ "eval_f1": 0.9689970901445788,
182
+ "eval_loss": 0.11550796031951904,
183
+ "eval_precision": 0.9684216937178355,
184
+ "eval_recall": 0.9695731707317073,
185
+ "eval_runtime": 2.1294,
186
+ "eval_samples_per_second": 779.097,
187
+ "eval_steps_per_second": 3.287,
188
+ "step": 210
189
+ },
190
+ {
191
+ "epoch": 15.95,
192
+ "eval_accuracy": 0.9733598056065904,
193
+ "eval_f1": 0.9709382953108094,
194
+ "eval_loss": 0.10925151407718658,
195
+ "eval_precision": 0.9706572412322131,
196
+ "eval_recall": 0.9712195121951219,
197
+ "eval_runtime": 2.0792,
198
+ "eval_samples_per_second": 797.884,
199
+ "eval_steps_per_second": 3.367,
200
+ "step": 224
201
+ },
202
+ {
203
+ "epoch": 16.95,
204
+ "eval_accuracy": 0.9739228352989984,
205
+ "eval_f1": 0.9713353956812605,
206
+ "eval_loss": 0.10589804500341415,
207
+ "eval_precision": 0.9710246488528685,
208
+ "eval_recall": 0.9716463414634147,
209
+ "eval_runtime": 3.3331,
210
+ "eval_samples_per_second": 497.732,
211
+ "eval_steps_per_second": 2.1,
212
+ "step": 238
213
+ },
214
+ {
215
+ "epoch": 17.95,
216
+ "eval_accuracy": 0.973952468440704,
217
+ "eval_f1": 0.9713650009905667,
218
+ "eval_loss": 0.10459830611944199,
219
+ "eval_precision": 0.9710838233949846,
220
+ "eval_recall": 0.9716463414634147,
221
+ "eval_runtime": 2.0698,
222
+ "eval_samples_per_second": 801.518,
223
+ "eval_steps_per_second": 3.382,
224
+ "step": 252
225
+ },
226
+ {
227
+ "epoch": 18.95,
228
+ "eval_accuracy": 0.9745154981331121,
229
+ "eval_f1": 0.9721574543958305,
230
+ "eval_loss": 0.10144730657339096,
231
+ "eval_precision": 0.9718760474115604,
232
+ "eval_recall": 0.9724390243902439,
233
+ "eval_runtime": 2.3781,
234
+ "eval_samples_per_second": 697.618,
235
+ "eval_steps_per_second": 2.944,
236
+ "step": 266
237
+ },
238
+ {
239
+ "epoch": 19.95,
240
+ "eval_accuracy": 0.9741599004326439,
241
+ "eval_f1": 0.971824761904762,
242
+ "eval_loss": 0.1002810001373291,
243
+ "eval_precision": 0.9714546839299315,
244
+ "eval_recall": 0.9721951219512195,
245
+ "eval_runtime": 2.3329,
246
+ "eval_samples_per_second": 711.141,
247
+ "eval_steps_per_second": 3.001,
248
+ "step": 280
249
+ },
250
+ {
251
+ "epoch": 20.95,
252
+ "eval_accuracy": 0.9750785278255201,
253
+ "eval_f1": 0.9727077396644468,
254
+ "eval_loss": 0.09868494421243668,
255
+ "eval_precision": 0.9723669378179934,
256
+ "eval_recall": 0.9730487804878049,
257
+ "eval_runtime": 2.094,
258
+ "eval_samples_per_second": 792.279,
259
+ "eval_steps_per_second": 3.343,
260
+ "step": 294
261
+ },
262
+ {
263
+ "epoch": 21.95,
264
+ "eval_accuracy": 0.9750192615421087,
265
+ "eval_f1": 0.9725075436618001,
266
+ "eval_loss": 0.09709486365318298,
267
+ "eval_precision": 0.9722408434395758,
268
+ "eval_recall": 0.9727743902439024,
269
+ "eval_runtime": 2.3309,
270
+ "eval_samples_per_second": 711.747,
271
+ "eval_steps_per_second": 3.003,
272
+ "step": 308
273
+ },
274
+ {
275
+ "epoch": 22.95,
276
+ "eval_accuracy": 0.9753748592425769,
277
+ "eval_f1": 0.9729877965172083,
278
+ "eval_loss": 0.09679476916790009,
279
+ "eval_precision": 0.9724396260316107,
280
+ "eval_recall": 0.9735365853658536,
281
+ "eval_runtime": 2.3344,
282
+ "eval_samples_per_second": 710.679,
283
+ "eval_steps_per_second": 2.999,
284
+ "step": 322
285
+ },
286
+ {
287
+ "epoch": 23.95,
288
+ "eval_accuracy": 0.975641557517928,
289
+ "eval_f1": 0.9732274825910068,
290
+ "eval_loss": 0.09535854309797287,
291
+ "eval_precision": 0.9728272458646846,
292
+ "eval_recall": 0.9736280487804878,
293
+ "eval_runtime": 3.076,
294
+ "eval_samples_per_second": 539.342,
295
+ "eval_steps_per_second": 2.276,
296
+ "step": 336
297
+ },
298
+ {
299
+ "epoch": 24.95,
300
+ "eval_accuracy": 0.9751970603923428,
301
+ "eval_f1": 0.9726641067836899,
302
+ "eval_loss": 0.09671631455421448,
303
+ "eval_precision": 0.9722492993785793,
304
+ "eval_recall": 0.9730792682926829,
305
+ "eval_runtime": 2.2902,
306
+ "eval_samples_per_second": 724.376,
307
+ "eval_steps_per_second": 3.056,
308
+ "step": 350
309
+ },
310
+ {
311
+ "epoch": 25.95,
312
+ "eval_accuracy": 0.9762638534937474,
313
+ "eval_f1": 0.9739440482720789,
314
+ "eval_loss": 0.09651771187782288,
315
+ "eval_precision": 0.9735286950164493,
316
+ "eval_recall": 0.974359756097561,
317
+ "eval_runtime": 2.3507,
318
+ "eval_samples_per_second": 705.738,
319
+ "eval_steps_per_second": 2.978,
320
+ "step": 364
321
+ },
322
+ {
323
+ "epoch": 26.95,
324
+ "eval_accuracy": 0.9756711906596337,
325
+ "eval_f1": 0.973000975134081,
326
+ "eval_loss": 0.09634628146886826,
327
+ "eval_precision": 0.9725268031189084,
328
+ "eval_recall": 0.9734756097560976,
329
+ "eval_runtime": 2.1161,
330
+ "eval_samples_per_second": 783.981,
331
+ "eval_steps_per_second": 3.308,
332
+ "step": 378
333
+ },
334
+ {
335
+ "epoch": 27.95,
336
+ "eval_accuracy": 0.9759082557932792,
337
+ "eval_f1": 0.9732752315943443,
338
+ "eval_loss": 0.09717196971178055,
339
+ "eval_precision": 0.9728009259259259,
340
+ "eval_recall": 0.97375,
341
+ "eval_runtime": 2.4757,
342
+ "eval_samples_per_second": 670.113,
343
+ "eval_steps_per_second": 2.827,
344
+ "step": 392
345
+ },
346
+ {
347
+ "epoch": 28.95,
348
+ "eval_accuracy": 0.9765601849108042,
349
+ "eval_f1": 0.9740214228032484,
350
+ "eval_loss": 0.09867348521947861,
351
+ "eval_precision": 0.9735615729036581,
352
+ "eval_recall": 0.9744817073170732,
353
+ "eval_runtime": 2.2832,
354
+ "eval_samples_per_second": 726.617,
355
+ "eval_steps_per_second": 3.066,
356
+ "step": 406
357
+ },
358
+ {
359
+ "epoch": 29.95,
360
+ "eval_accuracy": 0.9764416523439815,
361
+ "eval_f1": 0.9739541263430618,
362
+ "eval_loss": 0.09944748878479004,
363
+ "eval_precision": 0.9737315252171264,
364
+ "eval_recall": 0.9741768292682926,
365
+ "eval_runtime": 2.2486,
366
+ "eval_samples_per_second": 737.785,
367
+ "eval_steps_per_second": 3.113,
368
+ "step": 420
369
+ },
370
+ {
371
+ "epoch": 30.95,
372
+ "eval_accuracy": 0.9763527529188645,
373
+ "eval_f1": 0.9738618871260268,
374
+ "eval_loss": 0.09847575426101685,
375
+ "eval_precision": 0.9736689726632737,
376
+ "eval_recall": 0.9740548780487804,
377
+ "eval_runtime": 2.8613,
378
+ "eval_samples_per_second": 579.816,
379
+ "eval_steps_per_second": 2.446,
380
+ "step": 434
381
+ },
382
+ {
383
+ "epoch": 31.95,
384
+ "eval_accuracy": 0.9768565163278611,
385
+ "eval_f1": 0.9745301568430197,
386
+ "eval_loss": 0.10217323899269104,
387
+ "eval_precision": 0.9744261895327216,
388
+ "eval_recall": 0.9746341463414634,
389
+ "eval_runtime": 2.2672,
390
+ "eval_samples_per_second": 731.743,
391
+ "eval_steps_per_second": 3.088,
392
+ "step": 448
393
+ },
394
+ {
395
+ "epoch": 32.95,
396
+ "eval_accuracy": 0.9767379837610384,
397
+ "eval_f1": 0.9742120343839542,
398
+ "eval_loss": 0.10195796191692352,
399
+ "eval_precision": 0.9740338900402292,
400
+ "eval_recall": 0.974390243902439,
401
+ "eval_runtime": 2.0866,
402
+ "eval_samples_per_second": 795.073,
403
+ "eval_steps_per_second": 3.355,
404
+ "step": 462
405
+ },
406
+ {
407
+ "epoch": 33.95,
408
+ "eval_accuracy": 0.9757897232264565,
409
+ "eval_f1": 0.9734095238095238,
410
+ "eval_loss": 0.10545694828033447,
411
+ "eval_precision": 0.9730388423457731,
412
+ "eval_recall": 0.973780487804878,
413
+ "eval_runtime": 2.3249,
414
+ "eval_samples_per_second": 713.591,
415
+ "eval_steps_per_second": 3.011,
416
+ "step": 476
417
+ },
418
+ {
419
+ "epoch": 34.95,
420
+ "eval_accuracy": 0.9760267883601019,
421
+ "eval_f1": 0.9736721821007404,
422
+ "eval_loss": 0.10677994042634964,
423
+ "eval_precision": 0.9731680575013705,
424
+ "eval_recall": 0.9741768292682926,
425
+ "eval_runtime": 2.2489,
426
+ "eval_samples_per_second": 737.696,
427
+ "eval_steps_per_second": 3.113,
428
+ "step": 490
429
+ },
430
+ {
431
+ "epoch": 35.68,
432
+ "learning_rate": 4.9800000000000004e-05,
433
+ "loss": 0.6768,
434
+ "step": 500
435
+ },
436
+ {
437
+ "epoch": 35.95,
438
+ "eval_accuracy": 0.9764416523439815,
439
+ "eval_f1": 0.9738759335467154,
440
+ "eval_loss": 0.10853772610425949,
441
+ "eval_precision": 0.9737275220969217,
442
+ "eval_recall": 0.9740243902439024,
443
+ "eval_runtime": 2.1342,
444
+ "eval_samples_per_second": 777.355,
445
+ "eval_steps_per_second": 3.28,
446
+ "step": 504
447
+ },
448
+ {
449
+ "epoch": 36.95,
450
+ "eval_accuracy": 0.9763527529188645,
451
+ "eval_f1": 0.9738987337914641,
452
+ "eval_loss": 0.1088031679391861,
453
+ "eval_precision": 0.9734685796094916,
454
+ "eval_recall": 0.974329268292683,
455
+ "eval_runtime": 2.3204,
456
+ "eval_samples_per_second": 714.977,
457
+ "eval_steps_per_second": 3.017,
458
+ "step": 518
459
+ },
460
+ {
461
+ "epoch": 37.95,
462
+ "eval_accuracy": 0.976767616902744,
463
+ "eval_f1": 0.9741534335090981,
464
+ "eval_loss": 0.10998602956533432,
465
+ "eval_precision": 0.9738862819184594,
466
+ "eval_recall": 0.974420731707317,
467
+ "eval_runtime": 2.2182,
468
+ "eval_samples_per_second": 747.919,
469
+ "eval_steps_per_second": 3.156,
470
+ "step": 532
471
+ },
472
+ {
473
+ "epoch": 38.95,
474
+ "eval_accuracy": 0.9767379837610384,
475
+ "eval_f1": 0.9741690668861153,
476
+ "eval_loss": 0.11069974303245544,
477
+ "eval_precision": 0.9738870776074835,
478
+ "eval_recall": 0.9744512195121952,
479
+ "eval_runtime": 2.083,
480
+ "eval_samples_per_second": 796.451,
481
+ "eval_steps_per_second": 3.361,
482
+ "step": 546
483
+ },
484
+ {
485
+ "epoch": 39.95,
486
+ "eval_accuracy": 0.9768861494695668,
487
+ "eval_f1": 0.9743683520770474,
488
+ "eval_loss": 0.11153056472539902,
489
+ "eval_precision": 0.9740418012308817,
490
+ "eval_recall": 0.9746951219512195,
491
+ "eval_runtime": 2.295,
492
+ "eval_samples_per_second": 722.863,
493
+ "eval_steps_per_second": 3.05,
494
+ "step": 560
495
+ },
496
+ {
497
+ "epoch": 39.95,
498
+ "step": 560,
499
+ "total_flos": 4.190909533741901e+16,
500
+ "train_loss": 0.6079375518219812,
501
+ "train_runtime": 701.2451,
502
+ "train_samples_per_second": 851.514,
503
+ "train_steps_per_second": 0.799
504
+ }
505
+ ],
506
+ "max_steps": 560,
507
+ "num_train_epochs": 40,
508
+ "total_flos": 4.190909533741901e+16,
509
+ "trial_name": null,
510
+ "trial_params": null
511
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c931e07ae9288e99b67ff30078445ee1dca8352a82af3bafe38f3167d2d09dd
3
+ size 3439