import os import torch import boto3 import random import string import numpy as np import logging import datetime from contextlib import asynccontextmanager from fastapi import FastAPI, HTTPException, Request, Response from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel, constr, conint from diffusers import FluxPipeline from diffusers.pipelines import FluxImg2ImgPipeline from diffusers.pipelines import FluxInpaintPipeline from diffusers import CogVideoXImageToVideoPipeline from diffusers.pipelines import FluxControlNetPipeline from diffusers.pipelines import FluxControlNetInpaintPipeline from diffusers.models import FluxControlNetModel from diffusers.utils import load_image from PIL import Image from collections import defaultdict import time # Setup logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler("error.txt"), logging.StreamHandler() ]) app = FastAPI() # Allow CORS for specific origins if needed app.add_middleware( CORSMiddleware, allow_origins=["*"], # Update with specific domains as necessary allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) MAX_SEED = np.iinfo(np.int32).max # AWS S3 Configuration AWS_ACCESS_KEY_ID = "your-access-key-id" AWS_SECRET_ACCESS_KEY = "your-secret-access-key" AWS_REGION = "your-region" S3_BUCKET_NAME = "your-bucket-name" # Initialize S3 client s3_client = boto3.client( 's3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION ) # Asynchronously log requests async def log_requests(user_key: str, prompt: str): timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") log_entry = f"{timestamp}, {user_key}, {prompt}\n" async with aiofiles.open("key_requests.txt", "a") as log_file: await log_file.write(log_entry) # Asynchronously upload image to S3 async def upload_image_to_s3(image_path: str, s3_path: str): try: s3_client.upload_file(image_path, S3_BUCKET_NAME, s3_path) return f"https://{S3_BUCKET_NAME}.s3.{AWS_REGION}.amazonaws.com/{s3_path}" except Exception as e: logging.error(f"Error uploading image to S3: {e}") raise HTTPException(status_code=500, detail=f"Image upload failed: {str(e)}") # Generate a random sequence of 12 numbers and 11 words def generate_random_sequence(): random_numbers = ''.join(random.choices(string.digits, k=12)) # 12 random digits random_words = ''.join(random.choices(string.ascii_lowercase, k=11)) # 11 random letters return f"{random_numbers}_{random_words}" # Load the default pipeline once globally for efficiency flux_pipe = FluxPipeline.from_pretrained("pranavajay/flow", torch_dtype=torch.bfloat16) flux_pipe.enable_model_cpu_offload() logging.info("FluxPipeline loaded successfully.") img_pipe = FluxImg2ImgPipeline.from_pretrained("pranavajay/flow", torch_dtype=torch.bfloat16) img_pipe.enable_model_cpu_offload() logging.info("FluxImg2ImgPipeline loaded successfully.") inpainting_pipe = FluxImg2ImgPipeline.from_pretrained("pranavajay/flow", torch_dtype=torch.bfloat16) inpainting_pipe.enable_model_cpu_offload() logging.info("FluxInpaintPipeline loaded successfully.") video = CogVideoXImageToVideoPipeline.from_pretrained( "THUDM/CogVideoX-5b-I2V", torch_dtype=torch.bfloat16 ) video.enable_sequential_cpu_offload() video.vae.enable_tiling() video.vae.enable_slicing() logging.info("CogVideoXImageToVideoPipeline loaded successfully.") flux_controlnet_pipe = None # Rate limiting variables request_timestamps = defaultdict(list) # Store timestamps of requests per user key RATE_LIMIT = 30 # Maximum requests allowed TIME_WINDOW = 5 # Time window in seconds # Available LoRA styles and ControlNet adapters style_lora_mapping = { "Uncensored": {"path": "enhanceaiteam/Flux-uncensored", "triggered_word": "nsfw"}, "Logo": {"path": "Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design", "triggered_word": "logo"}, "Yarn": {"path": "Shakker-Labs/FLUX.1-dev-LoRA-MiaoKa-Yarn-World", "triggered_word": "mkym this is made of wool"}, "Anime": {"path": "prithivMLmods/Canopus-LoRA-Flux-Anime", "triggered_word": "anime"}, "Comic": {"path": "wkplhc/comic", "triggered_word": "comic"} } adapter_controlnet_mapping = { "Canny": "InstantX/FLUX.1-dev-controlnet-canny", "Depth": "Shakker-Labs/FLUX.1-dev-ControlNet-Depth", "Pose": "Shakker-Labs/FLUX.1-dev-ControlNet-Pose", "Upscale": "jasperai/Flux.1-dev-Controlnet-Upscaler" } # Request model for query parameters class GenerateImageRequest(BaseModel): prompt: constr(min_length=1) # Ensures prompt is not empty guidance_scale: float = 7.5 seed: conint(ge=0, le=MAX_SEED) = 42 randomize_seed: bool = False height: conint(gt=0) = 768 width: conint(gt=0) = 1360 control_image_url: str = "https://enhanceai.s3.amazonaws.com/792e2322-77fe-4070-aac4-7fa8d9e29c11_1.png" controlnet_conditioning_scale: float = 0.6 num_inference_steps: conint(gt=0) = 50 num_images_per_prompt: conint(gt=0, le=5) = 1 # Limit to max 5 images per request style: str = None # Optional LoRA style adapter: str = None # Optional ControlNet adapter user_key: str # API user key # Apply LoRA style to the prompt async def apply_lora_style(pipe, style, prompt): if style in style_lora_mapping: lora_path = style_lora_mapping[style]["path"] triggered_word = style_lora_mapping[style]["triggered_word"] pipe.load_lora_weights(lora_path) return f"{triggered_word} {prompt}" return prompt # Set ControlNet adapter for the pipeline async def set_controlnet_adapter(adapter: str, is_inpainting: bool = False): global flux_controlnet_pipe if adapter not in adapter_controlnet_mapping: raise ValueError(f"Invalid ControlNet adapter: {adapter}") controlnet_model_path = adapter_controlnet_mapping[adapter] controlnet = FluxControlNetModel.from_pretrained(controlnet_model_path, torch_dtype=torch.bfloat16) pipeline_cls = FluxControlNetPipeline if not is_inpainting else FluxControlNetInpaintPipeline flux_controlnet_pipe = pipeline_cls.from_pretrained( "pranavajay/flow", controlnet=controlnet, torch_dtype=torch.bfloat16 ) flux_controlnet_pipe.to("cuda") logging.info(f"ControlNet adapter '{adapter}' loaded successfully.") # Rate limit user requests async def rate_limit(user_key: str): current_time = time.time() request_timestamps[user_key] = [t for t in request_timestamps[user_key] if current_time - t < TIME_WINDOW] if len(request_timestamps[user_key]) >= RATE_LIMIT: logging.info(f"Rate limit exceeded for user_key: {user_key}") return False request_timestamps[user_key].append(current_time) return True @app.post("/text_to_image/") async def generate_image(req: GenerateImageRequest): seed = req.seed or random.randint(0, MAX_SEED) # Rate limit check if not await rate_limit(req.user_key): await log_requests(req.user_key, req.prompt) retries = 3 # Number of retries for transient errors for attempt in range(retries): try: # Check if prompt is None or empty if not req.prompt or req.prompt.strip() == "": raise ValueError("Prompt cannot be empty.") original_prompt = req.prompt # Save the original prompt # Set ControlNet if adapter is provided if req.adapter: try: await set_controlnet_adapter(req.adapter) except Exception as e: logging.error(f"Error setting ControlNet adapter: {e}") raise HTTPException(status_code=400, detail=f"Failed to load ControlNet adapter: {str(e)}") await apply_lora_style(flux_controlnet_pipe, req.style, req.prompt) # Load control image asynchronously try: loop = asyncio.get_running_loop() control_image = await loop.run_in_executor(None, load_image, req.control_image_url) except Exception as e: logging.error(f"Error loading control image from URL: {e}") raise HTTPException(status_code=400, detail="Invalid control image URL or image could not be loaded.") # Image generation with ControlNet try: if req.randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) images = await loop.run_in_executor(None, flux_controlnet_pipe, { "prompt": req.prompt, "guidance_scale": req.guidance_scale, "height": req.height, "width": req.width, "num_inference_steps": req.num_inference_steps, "num_images_per_prompt": req.num_images_per_prompt, "control_image": control_image, "generator": generator, "controlnet_conditioning_scale": req.controlnet_conditioning_scale }) except torch.cuda.OutOfMemoryError: logging.error("GPU out of memory error while generating images with ControlNet.") raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.") except Exception as e: logging.error(f"Error during image generation with ControlNet: {e}") raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}") else: # Image generation without ControlNet try: await apply_lora_style(flux_pipe, req.style, req.prompt) if req.randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) images = await loop.run_in_executor(None, flux_pipe, { "prompt": req.prompt, "guidance_scale": req.guidance_scale, "height": req.height, "width": req.width, "num_inference_steps": req.num_inference_steps, "num_images_per_prompt": req.num_images_per_prompt, "generator": generator }) except torch.cuda.OutOfMemoryError: logging.error("GPU out of memory error while generating images without ControlNet.") raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.") except Exception as e: logging.error(f"Error during image generation without ControlNet: {e}") raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}") # Saving images and uploading to S3 asynchronously image_urls = [] for img in images: image_path = f"generated_images/{generate_random_sequence()}.png" await loop.run_in_executor(None, img.save, image_path) image_url = await upload_image_to_s3(image_path, image_path) image_urls.append(image_url) os.remove(image_path) # Clean up local files after upload return { "status": "success", "output": image_urls, "prompt": original_prompt, "height": req.height, "width": req.width, "scale": req.guidance_scale, "steps": req.num_inference_steps, "style": req.style, "adapter": req.adapter } except Exception as e: logging.error(f"Attempt {attempt + 1} failed: {e}") if attempt == retries - 1: # Last attempt raise HTTPException(status_code=500, detail=f"Failed to generate image after multiple attempts: {str(e)}") continue # Retry on transient errors class GenerateImageToImageRequest(BaseModel): prompt: str = None # Prompt can be None image: str = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" strength: float = 0.7 guidance_scale: float = 7.5 seed: conint(ge=0, le=MAX_SEED) = 42 randomize_seed: bool = False height: conint(gt=0) = 768 width: conint(gt=0) = 1360 control_image_url: str = None # Optional ControlNet image controlnet_conditioning_scale: float = 0.6 num_inference_steps: conint(gt=0) = 50 num_images_per_prompt: conint(gt=0, le=5) = 1 style: str = None # Optional LoRA style adapter: str = None # Optional ControlNet adapter user_key: str # API user key @app.post("/image_to_image/") async def generate_image_to_image(req: GenerateImageToImageRequest): seed = req.seed original_prompt = req.prompt modified_prompt = original_prompt # Check if user is exceeding rate limit if not await rate_limit(req.user_key): await log_requests(req.user_key, req.prompt if req.prompt else "No prompt") raise HTTPException(status_code=429, detail="Rate limit exceeded") retries = 3 # Number of retries for transient errors loop = asyncio.get_running_loop() for attempt in range(retries): try: # Check if prompt is None or empty if not req.prompt or req.prompt.strip() == "": raise ValueError("Prompt cannot be empty.") original_prompt = req.prompt # Save the original prompt # Set ControlNet if adapter is provided if req.adapter: try: await set_controlnet_adapter(req.adapter) except Exception as e: logging.error(f"Error setting ControlNet adapter: {e}") raise HTTPException(status_code=400, detail=f"Failed to load ControlNet adapter: {str(e)}") await apply_lora_style(flux_controlnet_pipe, req.style, req.prompt) # Load control image asynchronously try: control_image = await loop.run_in_executor(None, load_image, req.control_image_url) except Exception as e: logging.error(f"Error loading control image from URL: {e}") raise HTTPException(status_code=400, detail="Invalid control image URL or image could not be loaded.") # Image generation with ControlNet try: if req.randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) images = await loop.run_in_executor(None, flux_controlnet_pipe, { "prompt": modified_prompt, "guidance_scale": req.guidance_scale, "height": req.height, "width": req.width, "num_inference_steps": req.num_inference_steps, "num_images_per_prompt": req.num_images_per_prompt, "control_image": control_image, "generator": generator, "controlnet_conditioning_scale": req.controlnet_conditioning_scale }) except torch.cuda.OutOfMemoryError: logging.error("GPU out of memory error while generating images with ControlNet.") raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.") except Exception as e: logging.error(f"Error during image generation with ControlNet: {e}") raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}") else: # Image generation without ControlNet try: await apply_lora_style(img_pipe, req.style, req.prompt) if req.randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) source = await loop.run_in_executor(None, load_image, req.image) images = await loop.run_in_executor(None, img_pipe, { "prompt": modified_prompt, "image": source, "strength": req.strength, "guidance_scale": req.guidance_scale, "height": req.height, "width": req.width, "num_inference_steps": req.num_inference_steps, "num_images_per_prompt": req.num_images_per_prompt, "generator": generator }) except torch.cuda.OutOfMemoryError: logging.error("GPU out of memory error while generating images without ControlNet.") raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.") except Exception as e: logging.error(f"Error during image generation without ControlNet: {e}") raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}") # Saving images and uploading to S3 asynchronously image_urls = [] for img in images: image_path = f"generated_images/{generate_random_sequence()}.png" await loop.run_in_executor(None, img.save, image_path) image_url = await upload_image_to_s3(image_path, image_path) image_urls.append(image_url) os.remove(image_path) # Clean up local files after upload return { "status": "success", "output": image_urls, "prompt": original_prompt, "height": req.height, "width": req.width, "image": req.image, "strength": req.strength, "scale": req.guidance_scale, "steps": req.num_inference_steps, "style": req.style, "adapter": req.adapter } except Exception as e: logging.error(f"Attempt {attempt + 1} failed: {e}") if attempt == retries - 1: # Last attempt raise HTTPException(status_code=500, detail=f"Failed to generate image after multiple attempts: {str(e)}") continue # Retry on transient errors class GenerateInpaintingRequest(BaseModel): prompt: str = None # Prompt can be None image: str = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" mask_image: str = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" guidance_scale: float = 7.5 seed: conint(ge=0, le=MAX_SEED) = 42 randomize_seed: bool = False height: conint(gt=0) = 768 width: conint(gt=0) = 1360 control_image_url: str = None # Optional ControlNet image controlnet_conditioning_scale: float = 0.6 num_inference_steps: conint(gt=0) = 50 num_images_per_prompt: conint(gt=0, le=5) = 1 style: str = None # Optional LoRA style adapter: str = None # Optional ControlNet adapter user_key: str # API user key @app.post("/inpainting/") async def generate_inpainting(req: GenerateInpaintingRequest): seed = req.seed original_prompt = req.prompt modified_prompt = original_prompt # Check if user is exceeding rate limit if not await rate_limit(req.user_key): await log_requests(req.user_key, req.prompt if req.prompt else "No prompt") raise HTTPException(status_code=429, detail="Rate limit exceeded") retries = 3 # Number of retries for transient errors loop = asyncio.get_running_loop() for attempt in range(retries): try: # Check if prompt is None or empty if not req.prompt or req.prompt.strip() == "": raise ValueError("Prompt cannot be empty.") # Set ControlNet if adapter is provided if req.adapter: try: await set_controlnet_adapter(req.adapter, is_inpainting=True) except Exception as e: logging.error(f"Error setting ControlNet adapter: {e}") raise HTTPException(status_code=400, detail=f"Failed to load ControlNet adapter: {str(e)}") await apply_lora_style(flux_inpainting_controlnet_pipe, req.style, req.prompt) # Load control image asynchronously try: control_image = await loop.run_in_executor(None, load_image, req.control_image_url) except Exception as e: logging.error(f"Error loading control image from URL: {e}") raise HTTPException(status_code=400, detail="Invalid control image URL or image could not be loaded.") # Image generation with ControlNet try: if req.randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) source = await loop.run_in_executor(None, load_image, req.image) mask = await loop.run_in_executor(None, load_image, req.mask_image) images = await loop.run_in_executor(None, flux_controlnet_pipe, { "prompt": modified_prompt, "image": source, "mask_image": mask, "guidance_scale": req.guidance_scale, "height": req.height, "width": req.width, "num_inference_steps": req.num_inference_steps, "num_images_per_prompt": req.num_images_per_prompt, "control_image": control_image, "generator": generator, "controlnet_conditioning_scale": req.controlnet_conditioning_scale }) except torch.cuda.OutOfMemoryError: logging.error("GPU out of memory error while generating images with ControlNet.") raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.") except Exception as e: logging.error(f"Error during image generation with ControlNet: {e}") raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}") else: # Image generation without ControlNet try: await apply_lora_style(inpainting_pipe, req.style, req.prompt) if req.randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) source = await loop.run_in_executor(None, load_image, req.image) mask = await loop.run_in_executor(None, load_image, req.mask_image) images = await loop.run_in_executor(None, inpainting_pipe, { "prompt": modified_prompt, "image": source, "mask_image": mask, "guidance_scale": req.guidance_scale, "height": req.height, "width": req.width, "num_inference_steps": req.num_inference_steps, "num_images_per_prompt": req.num_images_per_prompt, "generator": generator }) except torch.cuda.OutOfMemoryError: logging.error("GPU out of memory error while generating images without ControlNet.") raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.") except Exception as e: logging.error(f"Error during image generation without ControlNet: {e}") raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}") # Saving generated images image_urls = [] for i, img in enumerate(images): image_path = f"generated_images/inpainting_{generate_random_sequence()}.png" img.save(image_path) # Optionally, upload the image to S3 s3_path = f"inpainting/{original_prompt.replace(' ', '_')}_{generate_random_sequence()}_{i}.png" s3_url = await upload_file_to_s3(image_path, s3_path) image_urls.append(s3_url) # Clean up temporary files os.remove(image_path) return { "status": "success", "output": image_urls, "prompt": original_prompt, "height": req.height, "width": req.width, "scale": req.guidance_scale, "style": req.style, "adapter": req.adapter } except Exception as e: logging.error(f"Attempt {attempt + 1} failed: {e}") if attempt == retries - 1: # Last attempt raise HTTPException(status_code=500, detail=f"Failed to generate inpainting after multiple attempts: {str(e)}") continue # Retry on transient errors class GenerateVideoRequest(BaseModel): prompt: constr(min_length=1) # Ensures prompt is not empty guidance_scale: float = 7.5 seed: conint(ge=0, le=MAX_SEED) = 42 randomize_seed: bool = False height: conint(gt=0) = 768 width: conint(gt=0) = 1360 control_image_url: str = "https://enhanceai.s3.amazonaws.com/792e2322-77fe-4070-aac4-7fa8d9e29c11_1.png" controlnet_conditioning_scale: float = 0.6 num_inference_steps: conint(gt=0) = 50 num_images_per_prompt: conint(gt=0, le=5) = 1 # Limit to max 5 images per request style: str = None # Optional LoRA style adapter: str = None # Optional ControlNet adapter user_key: str # API user key @app.post("/text_to_video/") async def generate_video(req: GenerateImageRequest): seed = req.seed if not rate_limit(req.user_key): log_requests(req.user_key, req.prompt) # Log the request when rate limit is exceeded retries = 3 # Number of retries for transient errors s3_urls = [] # List to store S3 URLs of generated videos loop = asyncio.get_running_loop() # Get the current event loop for attempt in range(retries): try: # Check if prompt is None or empty if not req.prompt or req.prompt.strip() == "": raise ValueError("Prompt cannot be empty.") original_prompt = req.prompt # Save the original prompt # Set ControlNet if adapter is provided if req.adapter: try: await set_controlnet_adapter(req.adapter) except Exception as e: logging.error(f"Error setting ControlNet adapter: {e}") raise HTTPException(status_code=400, detail=f"Failed to load ControlNet adapter: {str(e)}") # Load control image asynchronously try: control_image = await loop.run_in_executor(None, load_image, req.control_image_url) except Exception as e: logging.error(f"Error loading control image from URL: {e}") raise HTTPException(status_code=400, detail="Invalid control image URL or image could not be loaded.") # Image generation with ControlNet try: if req.randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) images = await loop.run_in_executor(None, flux_controlnet_pipe, { "prompt": original_prompt, "guidance_scale": req.guidance_scale, "height": req.height, "width": req.width, "num_inference_steps": req.num_inference_steps, "num_images_per_prompt": req.num_images_per_prompt, "control_image": control_image, "generator": generator, "controlnet_conditioning_scale": req.controlnet_conditioning_scale }) except torch.cuda.OutOfMemoryError: logging.error("GPU out of memory error while generating images with ControlNet.") raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.") except Exception as e: logging.error(f"Error during image generation with ControlNet: {e}") raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}") else: # Image generation without ControlNet try: await apply_lora_style(flux_pipe, req.style, req.prompt) if req.randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) images = await loop.run_in_executor(None, flux_pipe, { "prompt": original_prompt, "guidance_scale": req.guidance_scale, "height": req.height, "width": req.width, "num_inference_steps": req.num_inference_steps, "num_images_per_prompt": req.num_images_per_prompt, "generator": generator }) except torch.cuda.OutOfMemoryError: logging.error("GPU out of memory error while generating images without ControlNet.") raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.") except Exception as e: logging.error(f"Error during image generation without ControlNet: {e}") raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}") # Saving images and uploading to S3 for i, img in enumerate(images): image_path = f"generated_images/{generate_random_sequence()}.png" # Save image asynchronously await loop.run_in_executor(None, img.save, image_path) # Generate video from the image if req.randomize_seed: seed = random.randint(0, MAX_SEED) vido = await loop.run_in_executor(None, video, { "prompt": original_prompt, "image": image_path, "num_videos_per_prompt": 1, "num_inference_steps": req.num_inference_steps, "num_frames": req.num_frames, "guidance_scale": req.guidance_scale, "generator": torch.Generator(device="cuda").manual_seed(seed) }) # Export the video to a file asynchronously video_path = f"generated_video_{i}_{generate_random_sequence()}.mp4" await loop.run_in_executor(None, export_to_video, vido, video_path, 8) # Upload the video to S3 asynchronously s3_path = f"videos/{original_prompt.replace(' ', '_')}_{generate_random_sequence()}_{i}.mp4" s3_url = await loop.run_in_executor(None, upload_file_to_s3, video_path, s3_path) s3_urls.append(s3_url) # Clean up temporary files os.remove(image_path) os.remove(video_path) return { "status": "success", "output": s3_urls, "prompt": original_prompt, "height": req.height, "width": req.width, "num_frames": req.num_frames, "scale": req.guidance_scale, "style": req.style, "adapter": req.adapter } except Exception as e: logging.error(f"Attempt {attempt + 1} failed: {e}") if attempt == retries - 1: # Last attempt raise HTTPException(status_code=500, detail=f"Failed to generate video after multiple attempts: {str(e)}") continue # Retry on transient errors @asynccontextmanager @app.on_event("shutdown") def shutdown_event(): """ Perform any cleanup activities on shutdown. """ logging.info("Shutting down the application gracefully.") # Additional endpoints can be added as needed, such as image-to-image or inpainting. if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)