pppereira3 commited on
Commit
38d0dc0
·
verified ·
1 Parent(s): cc4a1f2

update model

Browse files
Files changed (3) hide show
  1. README.md +217 -0
  2. config.json +94 -0
  3. hw4_mmcar25_regressor.pkl +3 -0
README.md ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - skops
6
+ - tabular-regression
7
+ model_format: pickle
8
+ model_file: hw4_mmcar25_regressor.pkl
9
+ widget:
10
+ - structuredData:
11
+ households:
12
+ - 269.0
13
+ - 236.0
14
+ - 246.0
15
+ housing_median_age:
16
+ - 49.0
17
+ - 31.0
18
+ - 17.0
19
+ latitude:
20
+ - 37.76
21
+ - 38.51
22
+ - 32.85
23
+ longitude:
24
+ - -122.19
25
+ - -121.51
26
+ - -115.57
27
+ median_income:
28
+ - 1.7056
29
+ - 6.6112
30
+ - 1.7411
31
+ ocean_proximity_<1H OCEAN:
32
+ - false
33
+ - false
34
+ - false
35
+ ocean_proximity_INLAND:
36
+ - false
37
+ - true
38
+ - true
39
+ ocean_proximity_ISLAND:
40
+ - false
41
+ - false
42
+ - false
43
+ ocean_proximity_NEAR BAY:
44
+ - true
45
+ - false
46
+ - false
47
+ ocean_proximity_NEAR OCEAN:
48
+ - false
49
+ - false
50
+ - false
51
+ population:
52
+ - 790.0
53
+ - 542.0
54
+ - 728.0
55
+ total_bedrooms:
56
+ - 282.0
57
+ - 217.0
58
+ - 256.0
59
+ total_rooms:
60
+ - 1368.0
61
+ - 1595.0
62
+ - 1039.0
63
+ ---
64
+
65
+ # Model description
66
+
67
+ [More Information Needed]
68
+
69
+ ## Intended uses & limitations
70
+
71
+ [More Information Needed]
72
+
73
+ ## Training Procedure
74
+
75
+ [More Information Needed]
76
+
77
+ ### Hyperparameters
78
+
79
+ <details>
80
+ <summary> Click to expand </summary>
81
+
82
+ | Hyperparameter | Value |
83
+ |--------------------------|---------------|
84
+ | bootstrap | True |
85
+ | ccp_alpha | 0.0 |
86
+ | criterion | squared_error |
87
+ | max_depth | |
88
+ | max_features | 1.0 |
89
+ | max_leaf_nodes | |
90
+ | max_samples | |
91
+ | min_impurity_decrease | 0.0 |
92
+ | min_samples_leaf | 1 |
93
+ | min_samples_split | 2 |
94
+ | min_weight_fraction_leaf | 0.0 |
95
+ | monotonic_cst | |
96
+ | n_estimators | 100 |
97
+ | n_jobs | |
98
+ | oob_score | False |
99
+ | random_state | |
100
+ | verbose | 0 |
101
+ | warm_start | False |
102
+
103
+ </details>
104
+
105
+ ### Model Plot
106
+
107
+ <style>#sk-container-id-4 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
108
+ }#sk-container-id-4 {color: var(--sklearn-color-text);
109
+ }#sk-container-id-4 pre {padding: 0;
110
+ }#sk-container-id-4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
111
+ }#sk-container-id-4 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
112
+ }#sk-container-id-4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
113
+ }#sk-container-id-4 div.sk-text-repr-fallback {display: none;
114
+ }div.sk-parallel-item,
115
+ div.sk-serial,
116
+ div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
117
+ }/* Parallel-specific style estimator block */#sk-container-id-4 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
118
+ }#sk-container-id-4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
119
+ }#sk-container-id-4 div.sk-parallel-item {display: flex;flex-direction: column;
120
+ }#sk-container-id-4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
121
+ }#sk-container-id-4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
122
+ }#sk-container-id-4 div.sk-parallel-item:only-child::after {width: 0;
123
+ }/* Serial-specific style estimator block */#sk-container-id-4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
124
+ }/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
125
+ clickable and can be expanded/collapsed.
126
+ - Pipeline and ColumnTransformer use this feature and define the default style
127
+ - Estimators will overwrite some part of the style using the `sk-estimator` class
128
+ *//* Pipeline and ColumnTransformer style (default) */#sk-container-id-4 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
129
+ }/* Toggleable label */
130
+ #sk-container-id-4 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;
131
+ }#sk-container-id-4 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
132
+ }#sk-container-id-4 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
133
+ }/* Toggleable content - dropdown */#sk-container-id-4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
134
+ }#sk-container-id-4 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
135
+ }#sk-container-id-4 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
136
+ }#sk-container-id-4 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
137
+ }#sk-container-id-4 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
138
+ }#sk-container-id-4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
139
+ }/* Pipeline/ColumnTransformer-specific style */#sk-container-id-4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
140
+ }#sk-container-id-4 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
141
+ }/* Estimator-specific style *//* Colorize estimator box */
142
+ #sk-container-id-4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
143
+ }#sk-container-id-4 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
144
+ }#sk-container-id-4 div.sk-label label.sk-toggleable__label,
145
+ #sk-container-id-4 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
146
+ }/* On hover, darken the color of the background */
147
+ #sk-container-id-4 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
148
+ }/* Label box, darken color on hover, fitted */
149
+ #sk-container-id-4 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
150
+ }/* Estimator label */#sk-container-id-4 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
151
+ }#sk-container-id-4 div.sk-label-container {text-align: center;
152
+ }/* Estimator-specific */
153
+ #sk-container-id-4 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
154
+ }#sk-container-id-4 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
155
+ }/* on hover */
156
+ #sk-container-id-4 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
157
+ }#sk-container-id-4 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
158
+ }/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
159
+ a:link.sk-estimator-doc-link,
160
+ a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
161
+ }.sk-estimator-doc-link.fitted,
162
+ a:link.sk-estimator-doc-link.fitted,
163
+ a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
164
+ }/* On hover */
165
+ div.sk-estimator:hover .sk-estimator-doc-link:hover,
166
+ .sk-estimator-doc-link:hover,
167
+ div.sk-label-container:hover .sk-estimator-doc-link:hover,
168
+ .sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
169
+ }div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
170
+ .sk-estimator-doc-link.fitted:hover,
171
+ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
172
+ .sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
173
+ }/* Span, style for the box shown on hovering the info icon */
174
+ .sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
175
+ }.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
176
+ }.sk-estimator-doc-link:hover span {display: block;
177
+ }/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-4 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
178
+ }#sk-container-id-4 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
179
+ }/* On hover */
180
+ #sk-container-id-4 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
181
+ }#sk-container-id-4 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
182
+ }
183
+ </style><div id="sk-container-id-4" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>RandomForestRegressor()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" checked><label for="sk-estimator-id-4" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;RandomForestRegressor<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.ensemble.RandomForestRegressor.html">?<span>Documentation for RandomForestRegressor</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>RandomForestRegressor()</pre></div> </div></div></div></div>
184
+
185
+ ## Evaluation Results
186
+
187
+ | Metric | Value |
188
+ |----------|----------|
189
+ | rmse | 0.308185 |
190
+
191
+ # How to Get Started with the Model
192
+
193
+ [More Information Needed]
194
+
195
+ # Model Card Authors
196
+
197
+ This model card is written by following authors:
198
+
199
+ [More Information Needed]
200
+
201
+ # Model Card Contact
202
+
203
+ You can contact the model card authors through following channels:
204
+ [More Information Needed]
205
+
206
+ # Citation
207
+
208
+ Below you can find information related to citation.
209
+
210
+ **BibTeX:**
211
+ ```
212
+ [More Information Needed]
213
+ ```
214
+
215
+ # eval_method
216
+
217
+ The model is evaluated using test split, on rmse.
config.json ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "longitude",
5
+ "latitude",
6
+ "housing_median_age",
7
+ "total_rooms",
8
+ "total_bedrooms",
9
+ "population",
10
+ "households",
11
+ "median_income",
12
+ "ocean_proximity_<1H OCEAN",
13
+ "ocean_proximity_INLAND",
14
+ "ocean_proximity_ISLAND",
15
+ "ocean_proximity_NEAR BAY",
16
+ "ocean_proximity_NEAR OCEAN"
17
+ ],
18
+ "environment": [
19
+ "scikit-learn=1.5.2"
20
+ ],
21
+ "example_input": {
22
+ "households": [
23
+ 269.0,
24
+ 236.0,
25
+ 246.0
26
+ ],
27
+ "housing_median_age": [
28
+ 49.0,
29
+ 31.0,
30
+ 17.0
31
+ ],
32
+ "latitude": [
33
+ 37.76,
34
+ 38.51,
35
+ 32.85
36
+ ],
37
+ "longitude": [
38
+ -122.19,
39
+ -121.51,
40
+ -115.57
41
+ ],
42
+ "median_income": [
43
+ 1.7056,
44
+ 6.6112,
45
+ 1.7411
46
+ ],
47
+ "ocean_proximity_<1H OCEAN": [
48
+ false,
49
+ false,
50
+ false
51
+ ],
52
+ "ocean_proximity_INLAND": [
53
+ false,
54
+ true,
55
+ true
56
+ ],
57
+ "ocean_proximity_ISLAND": [
58
+ false,
59
+ false,
60
+ false
61
+ ],
62
+ "ocean_proximity_NEAR BAY": [
63
+ true,
64
+ false,
65
+ false
66
+ ],
67
+ "ocean_proximity_NEAR OCEAN": [
68
+ false,
69
+ false,
70
+ false
71
+ ],
72
+ "population": [
73
+ 790.0,
74
+ 542.0,
75
+ 728.0
76
+ ],
77
+ "total_bedrooms": [
78
+ 282.0,
79
+ 217.0,
80
+ 256.0
81
+ ],
82
+ "total_rooms": [
83
+ 1368.0,
84
+ 1595.0,
85
+ 1039.0
86
+ ]
87
+ },
88
+ "model": {
89
+ "file": "hw4_mmcar25_regressor.pkl"
90
+ },
91
+ "model_format": "pickle",
92
+ "task": "tabular-regression"
93
+ }
94
+ }
hw4_mmcar25_regressor.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa5cb52bc0cb0598abc3e00041efd67758018a7a584f39e76f460f0d46ec84c6
3
+ size 126855906