--- license: apache-2.0 tags: - whisper-event - generated_from_trainer base_model: openai/whisper-base model-index: - name: whisper-base-full-data-language-v2-20ep results: [] --- # whisper-base-full-data-language-v2-20ep This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co./openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00015 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - training_steps: 63840 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.3116 | 1.57 | 5000 | 0.5301 | | 0.2104 | 3.13 | 10000 | 0.4066 | | 0.1729 | 4.7 | 15000 | 0.3555 | | 0.1472 | 6.27 | 20000 | 0.3208 | | 0.128 | 7.83 | 25000 | 0.2923 | | 0.1065 | 9.4 | 30000 | 0.2719 | | 0.0995 | 10.97 | 35000 | 0.2516 | | 0.0812 | 12.53 | 40000 | 0.2368 | | 0.066 | 14.1 | 45000 | 0.2230 | | 0.0574 | 15.67 | 50000 | 0.2119 | | 0.0463 | 17.23 | 55000 | 0.2028 | | 0.04 | 18.8 | 60000 | 0.1957 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.1.0a0+gitcc01568 - Datasets 2.13.1 - Tokenizers 0.13.3