--- license: bigscience-bloom-rail-1.0 tags: - text generation - generated_from_trainer - email generation - email - emailgen datasets: - aeslc - postbot/multi-emails-100k widget: - text: 'Good Morning Professor Beans, Hope you are doing well. I just wanted to reach out and ask if differential calculus will be on the exam' example_title: email to prof - text: '嘿 感谢你注册我的每周通讯。在我们开始之前,你必须确认你的电子邮件地址。.' example_title: 通讯 - text: 'Hi , I hope this email finds you well. I wanted to reach out and ask about office hours' example_title: office hours - text: 'Grüße , Ich hoffe, du hattest einen schönen Abend beim Wurstessen der Firma. Ich melde mich, weil' example_title: Wurstessen festival - text: 'Guten Morgen Harold, ich habe mich gefragt, wann die nächste' example_title: event - text: URGENT - I need the TPS reports example_title: URGENT - text: 'Hoi Archibald, ik hoop dat deze e-mail je goed doet.' example_title: e-mails die je vinden - text: 'Hello there. I just wanted to reach out and check in to' example_title: checking in - text: 'Hello , I hope this email finds you well. I wanted to reach out and see if you''ve enjoyed your time with us' example_title: work well - text: 'Hi , I hope this email finds you well. I wanted to reach out and see if we could catch up' example_title: catch up - text: 'Jestem , Właśnie wprowadziłem się do obszaru i chciałem dotrzeć i uzyskać kilka szczegółów na temat tego, gdzie mogę dostać artykuły spożywcze i' example_title: zakupy spożywcze parameters: min_length: 32 max_length: 128 no_repeat_ngram_size: 2 do_sample: true temperature: 0.2 top_k: 20 top_p: 0.95 repetition_penalty: 3.5 length_penalty: 0.9 base_model: bigscience/bloom-1b1 --- # bloom-1b1-emailgen - v1 This model is a fine-tuned version of [bigscience/bloom-1b1](https://huggingface.co./bigscience/bloom-1b1) on the ` postbot/multi-emails-100k` dataset. It achieves the following results on the evaluation set: - Loss: 1.7397 ## Model description More information needed ## Intended uses & limitations ⚠️ **this model did not have any of the original layers frozen during training** ⚠️ - while this is still an area of investigation, the model likely needs to have some layers frozen during fine-tuning to retain the multilingual capabilities in balance with learning how to write emails. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8465 | 1.0 | 256 | 1.8656 | | 1.4903 | 2.0 | 512 | 1.7396 | ### details ```md ***** eval metrics ***** epoch = 2.0 eval_loss = 1.7397 eval_runtime = 0:04:27.41 eval_samples = 4216 eval_samples_per_second = 15.766 eval_steps_per_second = 15.766 perplexity = 5.6956 ``` ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1