--- license: llama2 model-index: - name: Phind-CodeLlama-34B-v1 results: - task: type: text-generation dataset: type: openai_humaneval name: HumanEval metrics: - name: pass@1 type: pass@1 value: 73.8% verified: false tags: - code llama --- This is [Phind/Phind-CodeLlama-34B-v2](https://huggingface.co./Phind/Phind-CodeLlama-34B-v2) quantized to LMDeploy 4bit AWQ with the following config: ```bash python3 -m lmdeploy.lite.apis.auto_awq \ --model ./Phind-CodeLlama-34B-v2 \ --w_bits 4 \ --w_group_size 128 \ --work_dir ./quant ``` # Original Model Card: # **Phind-CodeLlama-34B-v2** We've fine-tuned Phind-CodeLlama-34B-v1 on an additional 1.5B tokens high-quality programming-related data, achieving **73.8% pass@1** on HumanEval. It's the current state-of-the-art amongst open-source models. Furthermore, this model is **instruction-tuned** on the Alpaca/Vicuna format to be steerable and easy-to-use. More details can be found on our [blog post](https://www.phind.com/blog/code-llama-beats-gpt4). ## Model Details This model is fine-tuned from Phind-CodeLlama-34B-v1 and achieves **73.8% pass@1** on HumanEval. Phind-CodeLlama-34B-v2 is **multi-lingual** and is proficient in Python, C/C++, TypeScript, Java, and more. ## Dataset Details We fined-tuned on a proprietary dataset of 1.5B tokens of high quality programming problems and solutions. This dataset consists of instruction-answer pairs instead of code completion examples, making it structurally different from HumanEval. LoRA was not used -- both models are a native finetune. We used DeepSpeed ZeRO 3 and Flash Attention 2 to train these models in 15 hours on 32 A100-80GB GPUs. We used a sequence length of 4096 tokens. ## How to Get Started with the Model Make sure to install Transformers from the main git branch: ```bash pip install git+https://github.com/huggingface/transformers.git ``` ## How to Prompt the Model This model accepts the Alpaca/Vicuna instruction format. For example: ``` ### System Prompt You are an intelligent programming assistant. ### User Message Implement a linked list in C++ ### Assistant ... ``` ## How to reproduce HumanEval Results To reproduce our results: ```python from transformers import AutoTokenizer, LlamaForCausalLM from human_eval.data import write_jsonl, read_problems from tqdm import tqdm # initialize the model model_path = "Phind/Phind-CodeLlama-34B-v2" model = LlamaForCausalLM.from_pretrained(model_path, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_path) # HumanEval helper def generate_one_completion(prompt: str): tokenizer.pad_token = tokenizer.eos_token inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096) # Generate generate_ids = model.generate(inputs.input_ids.to("cuda"), max_new_tokens=384, do_sample=True, top_p=0.75, top_k=40, temperature=0.1) completion = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] completion = completion.replace(prompt, "").split("\n\n\n")[0] return completion # perform HumanEval problems = read_problems() num_samples_per_task = 1 samples = [ dict(task_id=task_id, completion=generate_one_completion(problems[task_id]["prompt"])) for task_id in tqdm(problems) for _ in range(num_samples_per_task) ] write_jsonl("samples.jsonl", samples) # run `evaluate_functional_correctness samples.jsonl` in your HumanEval code sandbox ``` ## Bias, Risks, and Limitations This model has undergone very limited testing. Additional safety testing should be performed before any real-world deployments. ## Training details - **Hardware Type:** 32x A100-80GB - **Hours used:** 480 GPU-hours - **Cloud Provider:** AWS - **Compute Region:** us-east-1