--- base_model: meta-llama/Llama-3.1-8B-Instruct datasets: argilla-warehouse/FineTome-CLAIR library_name: transformers model_name: Llama-3.1-8B-Instruct-FineTome-APO-zero-12epoch-rmsprop-2048 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for Llama-3.1-8B-Instruct-FineTome-APO-zero-12epoch-rmsprop-2048 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Llama-3.1-8B-Instruct) on the [argilla-warehouse/FineTome-CLAIR](https://huggingface.co./datasets/argilla-warehouse/FineTome-CLAIR) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="plaguss/Llama-3.1-8B-Instruct-FineTome-APO-zero-12epoch-rmsprop-2048", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [Visualize in Weights & Biases](https://wandb.ai/plaguss/huggingface/runs/dukfosxa) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co./papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0.dev0 - Pytorch: 2.4.1 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```