--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer datasets: - scitldr model-index: - name: Llama-3.2-1B-Summarization-QLoRa results: [] pipeline_tag: summarization --- # Llama-3.2-1B-Summarization-QLoRa This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co./meta-llama/Llama-3.2-1B) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.5899 ## Model description Fine-tuned (QLoRa) Version of Meta-llama/Llama-3.2-1B for Summarization of scientific documents. ## Intended uses & limitations Summarization ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4993 | 0.2008 | 200 | 2.5715 | | 2.4748 | 0.4016 | 400 | 2.5674 | | 2.4744 | 0.6024 | 600 | 2.5674 | | 2.4646 | 0.8032 | 800 | 2.5558 | | 2.4637 | 1.0040 | 1000 | 2.5539 | | 2.1281 | 1.2048 | 1200 | 2.5904 | | 2.1157 | 1.4056 | 1400 | 2.5928 | | 2.0962 | 1.6064 | 1600 | 2.5855 | | 2.0721 | 1.8072 | 1800 | 2.5899 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3