File size: 2,033 Bytes
c1ad5b4 8610bd9 c1ad5b4 0393d9d c1ad5b4 fb3ca2f c1ad5b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: peft
license: llama3.2
base_model: meta-llama/Llama-3.2-1B
tags:
- generated_from_trainer
datasets:
- scitldr
model-index:
- name: Llama-3.2-1B-Summarization-QLoRa
results: []
pipeline_tag: summarization
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-3.2-1B-Summarization-QLoRa
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co./meta-llama/Llama-3.2-1B) on the scitldr dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5899
## Model description
Fine-tuned (QLoRa) Version of Meta-llama/Llama-3.2-1B for Summarization of scientific documents.
## Intended uses & limitations
Summarization
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.4993 | 0.2008 | 200 | 2.5715 |
| 2.4748 | 0.4016 | 400 | 2.5674 |
| 2.4744 | 0.6024 | 600 | 2.5674 |
| 2.4646 | 0.8032 | 800 | 2.5558 |
| 2.4637 | 1.0040 | 1000 | 2.5539 |
| 2.1281 | 1.2048 | 1200 | 2.5904 |
| 2.1157 | 1.4056 | 1400 | 2.5928 |
| 2.0962 | 1.6064 | 1600 | 2.5855 |
| 2.0721 | 1.8072 | 1800 | 2.5899 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |