--- library_name: peft tags: - generated_from_trainer datasets: - scitldr base_model: meta-llama/Llama-2-7b-hf model-index: - name: Llama-Summarization results: [] pipeline_tag: summarization --- # Llama Summarization This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co./meta-llama/Llama-2-7b-hf) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.1108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0965 | 0.25 | 500 | 2.1496 | | 2.0523 | 0.5 | 1000 | 2.1275 | | 2.0824 | 0.75 | 1500 | 2.1108 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2