File size: 1,773 Bytes
546cba6
 
 
 
 
 
 
 
 
 
 
431b7ee
546cba6
e01603b
546cba6
 
 
 
 
431b7ee
546cba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
base_model: bigscience/bloom-560m
datasets:
- scitldr
library_name: peft
license: bigscience-bloom-rail-1.0
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Summarization-Bloom-560m
  results: []
pipeline_tag: summarization
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Summarization-Bloom-560m

This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co./bigscience/bloom-560m) on the scitldr dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8578

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.8487        | 0.2510 | 500  | 2.9019          |
| 2.8069        | 0.5020 | 1000 | 2.8799          |
| 2.8195        | 0.7530 | 1500 | 2.8660          |
| 2.8024        | 1.0040 | 2000 | 2.8556          |
| 2.661         | 1.2550 | 2500 | 2.8637          |
| 2.6136        | 1.5060 | 3000 | 2.8608          |
| 2.5816        | 1.7570 | 3500 | 2.8578          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1