File size: 1,982 Bytes
85c6a12 4ecaa2e 85c6a12 4ecaa2e 85c6a12 4ecaa2e 85c6a12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: gemma
base_model: google/gemma-7b
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- GAIR/lima
model-index:
- name: gemma-lima
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma-lima
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co./google/gemma-7b) on the GAIR/lima dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7259
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 10.4256 | 0.91 | 5 | 47.0001 |
| 6.0419 | 2.0 | 11 | 43.9691 |
| 5.2838 | 2.91 | 16 | 40.7857 |
| 4.8705 | 4.0 | 22 | 33.9282 |
| 4.196 | 4.91 | 27 | 17.5336 |
| 3.0724 | 6.0 | 33 | 2.7088 |
| 2.1966 | 6.91 | 38 | 2.7434 |
| 2.1116 | 8.0 | 44 | 2.7265 |
| 2.0641 | 8.91 | 49 | 2.7168 |
| 2.0467 | 9.09 | 50 | 2.7259 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2
|