File size: 1,982 Bytes
85c6a12
 
 
 
4ecaa2e
 
 
 
85c6a12
 
 
 
4ecaa2e
85c6a12
 
 
 
 
 
 
 
 
 
4ecaa2e
85c6a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: gemma
base_model: google/gemma-7b
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- GAIR/lima
model-index:
- name: gemma-lima
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gemma-lima

This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co./google/gemma-7b) on the GAIR/lima dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7259

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 10.4256       | 0.91  | 5    | 47.0001         |
| 6.0419        | 2.0   | 11   | 43.9691         |
| 5.2838        | 2.91  | 16   | 40.7857         |
| 4.8705        | 4.0   | 22   | 33.9282         |
| 4.196         | 4.91  | 27   | 17.5336         |
| 3.0724        | 6.0   | 33   | 2.7088          |
| 2.1966        | 6.91  | 38   | 2.7434          |
| 2.1116        | 8.0   | 44   | 2.7265          |
| 2.0641        | 8.91  | 49   | 2.7168          |
| 2.0467        | 9.09  | 50   | 2.7259          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2