File size: 2,127 Bytes
cd873ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad671c8
cd873ea
 
 
 
 
 
 
 
 
ad671c8
 
cd873ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f24ed
cd873ea
 
 
 
 
 
 
 
e1f24ed
cd873ea
 
 
 
 
e1f24ed
 
 
 
 
 
cd873ea
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: facebook/vit-msn-small
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-msn-small-finetuned-eurosat
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8105263157894737
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-msn-small-finetuned-eurosat

This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co./facebook/vit-msn-small) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6607
- Accuracy: 0.8105

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 1.115         | 0.9362 | 11   | 1.0397          | 0.6526   |
| 0.8536        | 1.9574 | 23   | 0.7698          | 0.7579   |
| 0.5677        | 2.9787 | 35   | 0.7200          | 0.7895   |
| 0.419         | 4.0    | 47   | 0.7286          | 0.7842   |
| 0.3365        | 4.9362 | 58   | 0.6607          | 0.8105   |
| 0.2317        | 5.6170 | 66   | 0.6649          | 0.8      |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1