File size: 3,456 Bytes
dd1bddc 7210228 dd1bddc 019856b dd1bddc 7210228 e7922dc 7210228 dd1bddc 019856b e7922dc 019856b dd1bddc e7922dc dd1bddc e7922dc dd1bddc a371178 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
language:
- en
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- pittawat/letter_recognition
metrics:
- accuracy
base_model: google/vit-base-patch16-224-in21k
model-index:
- name: vit-base-letter
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-letter
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the pittawat/letter_recognition dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0515
- Accuracy: 0.9881
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5539 | 0.12 | 100 | 0.5576 | 0.9308 |
| 0.2688 | 0.25 | 200 | 0.2371 | 0.9665 |
| 0.1568 | 0.37 | 300 | 0.1829 | 0.9688 |
| 0.1684 | 0.49 | 400 | 0.1611 | 0.9662 |
| 0.1584 | 0.62 | 500 | 0.1340 | 0.9673 |
| 0.1569 | 0.74 | 600 | 0.1933 | 0.9531 |
| 0.0992 | 0.86 | 700 | 0.1031 | 0.9781 |
| 0.0573 | 0.98 | 800 | 0.1024 | 0.9781 |
| 0.0359 | 1.11 | 900 | 0.0950 | 0.9804 |
| 0.0961 | 1.23 | 1000 | 0.1200 | 0.9723 |
| 0.0334 | 1.35 | 1100 | 0.0995 | 0.975 |
| 0.0855 | 1.48 | 1200 | 0.0791 | 0.9815 |
| 0.0902 | 1.6 | 1300 | 0.0981 | 0.9765 |
| 0.0583 | 1.72 | 1400 | 0.1192 | 0.9712 |
| 0.0683 | 1.85 | 1500 | 0.0692 | 0.9846 |
| 0.1188 | 1.97 | 1600 | 0.0931 | 0.9785 |
| 0.0366 | 2.09 | 1700 | 0.0919 | 0.9804 |
| 0.0276 | 2.21 | 1800 | 0.0667 | 0.9846 |
| 0.0309 | 2.34 | 1900 | 0.0599 | 0.9858 |
| 0.0183 | 2.46 | 2000 | 0.0892 | 0.9769 |
| 0.0431 | 2.58 | 2100 | 0.0663 | 0.985 |
| 0.0424 | 2.71 | 2200 | 0.0643 | 0.9862 |
| 0.0453 | 2.83 | 2300 | 0.0646 | 0.9862 |
| 0.0528 | 2.95 | 2400 | 0.0550 | 0.985 |
| 0.0045 | 3.08 | 2500 | 0.0579 | 0.9846 |
| 0.007 | 3.2 | 2600 | 0.0517 | 0.9885 |
| 0.0048 | 3.32 | 2700 | 0.0584 | 0.9865 |
| 0.019 | 3.44 | 2800 | 0.0560 | 0.9873 |
| 0.0038 | 3.57 | 2900 | 0.0515 | 0.9881 |
| 0.0219 | 3.69 | 3000 | 0.0527 | 0.9881 |
| 0.0117 | 3.81 | 3100 | 0.0523 | 0.9888 |
| 0.0035 | 3.94 | 3200 | 0.0559 | 0.9865 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2 |