pittawat commited on
Commit
1536221
1 Parent(s): 3273382

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -4.17 +/- 1.38
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de8e51202e03749adca5348f07fbc80c1807673e54b2281dd3760130df1f70eb
3
+ size 108041
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f402c7e1700>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f402c7dadb0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1500016,
45
+ "_total_timesteps": 1500000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1676112362967978006,
50
+ "learning_rate": 0.001,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWza0PnG0fr/1UvA+gA39vsuhy7tGW7g/4dX+PLFthz/hJWK+k3AWvx2ypT+belq/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1zmwP8HZhr9bBVQ/8xBpv9NmvL1FjnA/gm6evSdjfz8YWrs6z7YkvxuKVT+J2qS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABbNrQ+cbR+v/VS8D5CqHU/h7QoPGPuPT6ADf2+y6HLu0ZbuD85Oou/k0JWP34xo7/h1f48sW2HP+ElYr4Ysx8/Y9ifv1Mu7T6TcBa/HbKlP5t6Wr/Tr7M/mWMXvlkms72UaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.3519772 -0.9949408 0.4693829 ]\n [-0.49424362 -0.00621436 1.4402854 ]\n [ 0.03110784 1.058035 -0.22084762]\n [-0.58765525 1.2944981 -0.8534333 ]]",
60
+ "desired_goal": "[[ 1.3767651 -1.0535203 0.8282067 ]\n [-0.9104149 -0.091993 0.93967086]\n [-0.07735921 0.9976067 0.00142938]\n [-0.64341444 0.8341386 -1.2879192 ]]",
61
+ "observation": "[[ 0.3519772 -0.9949408 0.4693829 0.95959866 0.01029695 0.18547969]\n [-0.49424362 -0.00621436 1.4402854 -1.0877143 0.83695334 -1.2749479 ]\n [ 0.03110784 1.058035 -0.22084762 0.6238265 -1.2487911 0.46324405]\n [-0.58765525 1.2944981 -0.8534333 1.4038032 -0.14784087 -0.08747549]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+h60vbGatT3KcRc+QhssPCwmvr2sbH490o8vPQKUgL2/ApI+THqXPLXR4L1jOCE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.08794971 0.08867396 0.14789501]\n [ 0.01050455 -0.09284624 0.06211536]\n [ 0.04286177 -0.0627823 0.2851772 ]\n [ 0.01849093 -0.10977498 0.03936042]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": -1.066666666660332e-05,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE7u2t1syCMCUhpRSlIwBbJRLMowBdJRHQLAdjNsFdLR1fZQoaAZoCWgPQwjwoxr2e0IIwJSGlFKUaBVLMmgWR0CwHU9jkMkQdX2UKGgGaAloD0MIIO1/gLXKA8CUhpRSlGgVSzJoFkdAsB0NV6u4gHV9lChoBmgJaA9DCCOHiJtTaQjAlIaUUpRoFUsyaBZHQLAc74yoGY91fZQoaAZoCWgPQwhnutdJfZkDwJSGlFKUaBVLMmgWR0CwHj3MINVjdX2UKGgGaAloD0MILC0j9Z5KBcCUhpRSlGgVSzJoFkdAsB4AZDRc/3V9lChoBmgJaA9DCAINNnUelQbAlIaUUpRoFUsyaBZHQLAdvmXw9aF1fZQoaAZoCWgPQwgZkL3e/YETwJSGlFKUaBVLMmgWR0CwHaCaVlf7dX2UKGgGaAloD0MITFXa4ho/CcCUhpRSlGgVSzJoFkdAsB7tDb8FZHV9lChoBmgJaA9DCEvl7QinhQ/AlIaUUpRoFUsyaBZHQLAer8xbjcV1fZQoaAZoCWgPQwgzcEBLV9AFwJSGlFKUaBVLMmgWR0CwHm3x4IKMdX2UKGgGaAloD0MIjuVd9YAZDcCUhpRSlGgVSzJoFkdAsB5QFwDNhXV9lChoBmgJaA9DCMMuih742AzAlIaUUpRoFUsyaBZHQLAfo51eSjh1fZQoaAZoCWgPQwgfMXpuoYsMwJSGlFKUaBVLMmgWR0CwH2Y7ihnKdX2UKGgGaAloD0MICRoziXrhA8CUhpRSlGgVSzJoFkdAsB8kVTJhfHV9lChoBmgJaA9DCIRm170ViQ7AlIaUUpRoFUsyaBZHQLAfBpeu3c51fZQoaAZoCWgPQwhCCp5CrpQIwJSGlFKUaBVLMmgWR0CwIF2TcIqtdX2UKGgGaAloD0MI6jwq/u9IC8CUhpRSlGgVSzJoFkdAsCAgJgLJCHV9lChoBmgJaA9DCPQyiuWW1gPAlIaUUpRoFUsyaBZHQLAf3j2i+L51fZQoaAZoCWgPQwgiqBq9GmADwJSGlFKUaBVLMmgWR0CwH8CBshxHdX2UKGgGaAloD0MIhX07iQivHsCUhpRSlGgVSzJoFkdAsCEb8baRIXV9lChoBmgJaA9DCH5S7dPxGAzAlIaUUpRoFUsyaBZHQLAg3qS5iEx1fZQoaAZoCWgPQwgk8Ief/34QwJSGlFKUaBVLMmgWR0CwIJy7CiyqdX2UKGgGaAloD0MI5Gn5gav8EMCUhpRSlGgVSzJoFkdAsCB+/qPfbnV9lChoBmgJaA9DCPzjvWplggjAlIaUUpRoFUsyaBZHQLAh3JkoWpJ1fZQoaAZoCWgPQwhNLzGW6dcDwJSGlFKUaBVLMmgWR0CwIZ9H6MzedX2UKGgGaAloD0MIM6g2OBG9C8CUhpRSlGgVSzJoFkdAsCFdgBtDUnV9lChoBmgJaA9DCJpeYizTjxDAlIaUUpRoFUsyaBZHQLAhP8zQ/ot1fZQoaAZoCWgPQwjvWddoOTAFwJSGlFKUaBVLMmgWR0CwIpTjin50dX2UKGgGaAloD0MIGxGMg0vnCcCUhpRSlGgVSzJoFkdAsCJXPiT+vXV9lChoBmgJaA9DCE4pr5XQfQXAlIaUUpRoFUsyaBZHQLAiFQaJhv11fZQoaAZoCWgPQwgNAFXcuOURwJSGlFKUaBVLMmgWR0CwIfb/4qPPdX2UKGgGaAloD0MIvXDnwkgPFMCUhpRSlGgVSzJoFkdAsCMAfU4JeHV9lChoBmgJaA9DCNgqweJwZhfAlIaUUpRoFUsyaBZHQLAiws54nnd1fZQoaAZoCWgPQwiDMLd7uT8dwJSGlFKUaBVLMmgWR0CwIoCVfNRndX2UKGgGaAloD0MIIxRbQdPSCcCUhpRSlGgVSzJoFkdAsCJihakhzXV9lChoBmgJaA9DCN9sc2N64grAlIaUUpRoFUsyaBZHQLAjcxs2vSt1fZQoaAZoCWgPQwjj/iPToVMOwJSGlFKUaBVLMmgWR0CwIzWFSKm9dX2UKGgGaAloD0MIOx3Iemo1EcCUhpRSlGgVSzJoFkdAsCLztUn5SHV9lChoBmgJaA9DCBGLGHYY8wfAlIaUUpRoFUsyaBZHQLAi1cFhXsB1fZQoaAZoCWgPQwhfYizTL1EHwJSGlFKUaBVLMmgWR0CwI+VzMibEdX2UKGgGaAloD0MIw7gbRGuVGcCUhpRSlGgVSzJoFkdAsCOnv8ZUDXV9lChoBmgJaA9DCJlnJa34hgXAlIaUUpRoFUsyaBZHQLAjZZDiOvN1fZQoaAZoCWgPQwi/02TG2+oMwJSGlFKUaBVLMmgWR0CwI0ePmxMWdX2UKGgGaAloD0MIJF6ezhWlD8CUhpRSlGgVSzJoFkdAsCRV0bLlm3V9lChoBmgJaA9DCGlXIeUndQXAlIaUUpRoFUsyaBZHQLAkGBcAzYV1fZQoaAZoCWgPQwinsijsovgTwJSGlFKUaBVLMmgWR0CwI9YLThHcdX2UKGgGaAloD0MId6IkJNKWB8CUhpRSlGgVSzJoFkdAsCO4AaNuL3V9lChoBmgJaA9DCNFcp5GWqgnAlIaUUpRoFUsyaBZHQLAkwVgQYk51fZQoaAZoCWgPQwjxLhfxnTgSwJSGlFKUaBVLMmgWR0CwJIOZLIxQdX2UKGgGaAloD0MI78UX7fHCE8CUhpRSlGgVSzJoFkdAsCRBT/ACXHV9lChoBmgJaA9DCJ1LcVXZtwXAlIaUUpRoFUsyaBZHQLAkI10T1011fZQoaAZoCWgPQwjJrUm3JdIIwJSGlFKUaBVLMmgWR0CwJSysKb8WdX2UKGgGaAloD0MI0Joff2nRCMCUhpRSlGgVSzJoFkdAsCTu7wrlNnV9lChoBmgJaA9DCDfBN02fvQ7AlIaUUpRoFUsyaBZHQLAkrJ9y9251fZQoaAZoCWgPQwjLvFXXoToJwJSGlFKUaBVLMmgWR0CwJI6WcBludX2UKGgGaAloD0MIIqrwZ3jTB8CUhpRSlGgVSzJoFkdAsCWZb6guiHV9lChoBmgJaA9DCPFiYYicfgvAlIaUUpRoFUsyaBZHQLAlXBxPwd91fZQoaAZoCWgPQwjoTUUqjA0TwJSGlFKUaBVLMmgWR0CwJRo2bXpXdX2UKGgGaAloD0MIdy/3yVHADcCUhpRSlGgVSzJoFkdAsCT8dyT6i3V9lChoBmgJaA9DCM3IIHcRZg7AlIaUUpRoFUsyaBZHQLAmCuV5a/11fZQoaAZoCWgPQwibjZWYZyUGwJSGlFKUaBVLMmgWR0CwJc0srd30dX2UKGgGaAloD0MIeJlho6z/CsCUhpRSlGgVSzJoFkdAsCWK5e7cwnV9lChoBmgJaA9DCOXQItv53gPAlIaUUpRoFUsyaBZHQLAlbNTLns91fZQoaAZoCWgPQwhegH106ooJwJSGlFKUaBVLMmgWR0CwJnh3iaRZdX2UKGgGaAloD0MIWRMLfEWXBcCUhpRSlGgVSzJoFkdAsCY60jTrmnV9lChoBmgJaA9DCBMQk3AhrwzAlIaUUpRoFUsyaBZHQLAl+I/JNj91fZQoaAZoCWgPQwiVRPZBloUOwJSGlFKUaBVLMmgWR0CwJdp/9YOldX2UKGgGaAloD0MI6rKY2HzsEcCUhpRSlGgVSzJoFkdAsCbmitaIN3V9lChoBmgJaA9DCEVHcvkPiRHAlIaUUpRoFUsyaBZHQLAmqNiYsup1fZQoaAZoCWgPQwinIarwZ7gOwJSGlFKUaBVLMmgWR0CwJmaSowVTdX2UKGgGaAloD0MIGAeXjjkPBcCUhpRSlGgVSzJoFkdAsCZId92HL3V9lChoBmgJaA9DCPYpx2RxbxHAlIaUUpRoFUsyaBZHQLAnVNvwVj91fZQoaAZoCWgPQwhR9SudD68KwJSGlFKUaBVLMmgWR0CwJxcxwhnrdX2UKGgGaAloD0MIyJV6FoQyC8CUhpRSlGgVSzJoFkdAsCbU81XNknV9lChoBmgJaA9DCN44Kcx73AzAlIaUUpRoFUsyaBZHQLAmtt/nW8R1fZQoaAZoCWgPQwhCsKpefmcJwJSGlFKUaBVLMmgWR0CwJ8NNBWxRdX2UKGgGaAloD0MIZ9e9FYm5F8CUhpRSlGgVSzJoFkdAsCeFj7Q9inV9lChoBmgJaA9DCNNNYhBY6RjAlIaUUpRoFUsyaBZHQLAnQ0JF9a51fZQoaAZoCWgPQwiA1vz4S2sIwJSGlFKUaBVLMmgWR0CwJyUqDsdDdX2UKGgGaAloD0MIU82spYDUCMCUhpRSlGgVSzJoFkdAsCgxfMOf/XV9lChoBmgJaA9DCKVKlL2lfAnAlIaUUpRoFUsyaBZHQLAn88e0Xxh1fZQoaAZoCWgPQwh5r1qZ8OsNwJSGlFKUaBVLMmgWR0CwJ7Gi1y/9dX2UKGgGaAloD0MIvwtbs5WXFMCUhpRSlGgVSzJoFkdAsCeTtAs053V9lChoBmgJaA9DCODVcmcmqBbAlIaUUpRoFUsyaBZHQLAoo544ZMt1fZQoaAZoCWgPQwjMXUvIB30DwJSGlFKUaBVLMmgWR0CwKGX+VC5VdX2UKGgGaAloD0MIOMDMd/AzDsCUhpRSlGgVSzJoFkdAsCgjyVfNRnV9lChoBmgJaA9DCHdJnBVR0w3AlIaUUpRoFUsyaBZHQLAoBchC+lF1fZQoaAZoCWgPQwhHOgMjLysGwJSGlFKUaBVLMmgWR0CwKRMDSw4bdX2UKGgGaAloD0MI/u4dNSZkCsCUhpRSlGgVSzJoFkdAsCjVWKdhAnV9lChoBmgJaA9DCAqEnWLVYAzAlIaUUpRoFUsyaBZHQLAokw5/9YR1fZQoaAZoCWgPQwjYKyy4H3AKwJSGlFKUaBVLMmgWR0CwKHUBCD28dX2UKGgGaAloD0MIAvG6fsFuBcCUhpRSlGgVSzJoFkdAsCl/ua4MF3V9lChoBmgJaA9DCHHLR1LSAwnAlIaUUpRoFUsyaBZHQLApQiEQGwB1fZQoaAZoCWgPQwivIqMDktATwJSGlFKUaBVLMmgWR0CwKP/zOHFhdX2UKGgGaAloD0MIHsNjP4vFB8CUhpRSlGgVSzJoFkdAsCjh1s+FDnV9lChoBmgJaA9DCPEr1nCRmxXAlIaUUpRoFUsyaBZHQLAp83gDRtx1fZQoaAZoCWgPQwgBT1q4rFISwJSGlFKUaBVLMmgWR0CwKbXJT2nLdX2UKGgGaAloD0MIzO7Jw0KtD8CUhpRSlGgVSzJoFkdAsClzl8w6AHV9lChoBmgJaA9DCM14W+m1yRTAlIaUUpRoFUsyaBZHQLApVbvw3Hd1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 53572,
87
+ "n_steps": 7,
88
+ "gamma": 0.98,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:805dac8c63176caa1b8094b253b0620214b0e68bdac1eef6fb28f79fa8bad4a4
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efb76ef41666f152d012075582e0e159f36d0b8c2474e68d9f8c883f45a77de9
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f402c7e1700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f402c7dadb0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500016, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676112362967978006, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWza0PnG0fr/1UvA+gA39vsuhy7tGW7g/4dX+PLFthz/hJWK+k3AWvx2ypT+belq/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1zmwP8HZhr9bBVQ/8xBpv9NmvL1FjnA/gm6evSdjfz8YWrs6z7YkvxuKVT+J2qS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABbNrQ+cbR+v/VS8D5CqHU/h7QoPGPuPT6ADf2+y6HLu0ZbuD85Oou/k0JWP34xo7/h1f48sW2HP+ElYr4Ysx8/Y9ifv1Mu7T6TcBa/HbKlP5t6Wr/Tr7M/mWMXvlkms72UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3519772 -0.9949408 0.4693829 ]\n [-0.49424362 -0.00621436 1.4402854 ]\n [ 0.03110784 1.058035 -0.22084762]\n [-0.58765525 1.2944981 -0.8534333 ]]", "desired_goal": "[[ 1.3767651 -1.0535203 0.8282067 ]\n [-0.9104149 -0.091993 0.93967086]\n [-0.07735921 0.9976067 0.00142938]\n [-0.64341444 0.8341386 -1.2879192 ]]", "observation": "[[ 0.3519772 -0.9949408 0.4693829 0.95959866 0.01029695 0.18547969]\n [-0.49424362 -0.00621436 1.4402854 -1.0877143 0.83695334 -1.2749479 ]\n [ 0.03110784 1.058035 -0.22084762 0.6238265 -1.2487911 0.46324405]\n [-0.58765525 1.2944981 -0.8534333 1.4038032 -0.14784087 -0.08747549]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+h60vbGatT3KcRc+QhssPCwmvr2sbH490o8vPQKUgL2/ApI+THqXPLXR4L1jOCE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08794971 0.08867396 0.14789501]\n [ 0.01050455 -0.09284624 0.06211536]\n [ 0.04286177 -0.0627823 0.2851772 ]\n [ 0.01849093 -0.10977498 0.03936042]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1.066666666660332e-05, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE7u2t1syCMCUhpRSlIwBbJRLMowBdJRHQLAdjNsFdLR1fZQoaAZoCWgPQwjwoxr2e0IIwJSGlFKUaBVLMmgWR0CwHU9jkMkQdX2UKGgGaAloD0MIIO1/gLXKA8CUhpRSlGgVSzJoFkdAsB0NV6u4gHV9lChoBmgJaA9DCCOHiJtTaQjAlIaUUpRoFUsyaBZHQLAc74yoGY91fZQoaAZoCWgPQwhnutdJfZkDwJSGlFKUaBVLMmgWR0CwHj3MINVjdX2UKGgGaAloD0MILC0j9Z5KBcCUhpRSlGgVSzJoFkdAsB4AZDRc/3V9lChoBmgJaA9DCAINNnUelQbAlIaUUpRoFUsyaBZHQLAdvmXw9aF1fZQoaAZoCWgPQwgZkL3e/YETwJSGlFKUaBVLMmgWR0CwHaCaVlf7dX2UKGgGaAloD0MITFXa4ho/CcCUhpRSlGgVSzJoFkdAsB7tDb8FZHV9lChoBmgJaA9DCEvl7QinhQ/AlIaUUpRoFUsyaBZHQLAer8xbjcV1fZQoaAZoCWgPQwgzcEBLV9AFwJSGlFKUaBVLMmgWR0CwHm3x4IKMdX2UKGgGaAloD0MIjuVd9YAZDcCUhpRSlGgVSzJoFkdAsB5QFwDNhXV9lChoBmgJaA9DCMMuih742AzAlIaUUpRoFUsyaBZHQLAfo51eSjh1fZQoaAZoCWgPQwgfMXpuoYsMwJSGlFKUaBVLMmgWR0CwH2Y7ihnKdX2UKGgGaAloD0MICRoziXrhA8CUhpRSlGgVSzJoFkdAsB8kVTJhfHV9lChoBmgJaA9DCIRm170ViQ7AlIaUUpRoFUsyaBZHQLAfBpeu3c51fZQoaAZoCWgPQwhCCp5CrpQIwJSGlFKUaBVLMmgWR0CwIF2TcIqtdX2UKGgGaAloD0MI6jwq/u9IC8CUhpRSlGgVSzJoFkdAsCAgJgLJCHV9lChoBmgJaA9DCPQyiuWW1gPAlIaUUpRoFUsyaBZHQLAf3j2i+L51fZQoaAZoCWgPQwgiqBq9GmADwJSGlFKUaBVLMmgWR0CwH8CBshxHdX2UKGgGaAloD0MIhX07iQivHsCUhpRSlGgVSzJoFkdAsCEb8baRIXV9lChoBmgJaA9DCH5S7dPxGAzAlIaUUpRoFUsyaBZHQLAg3qS5iEx1fZQoaAZoCWgPQwgk8Ief/34QwJSGlFKUaBVLMmgWR0CwIJy7CiyqdX2UKGgGaAloD0MI5Gn5gav8EMCUhpRSlGgVSzJoFkdAsCB+/qPfbnV9lChoBmgJaA9DCPzjvWplggjAlIaUUpRoFUsyaBZHQLAh3JkoWpJ1fZQoaAZoCWgPQwhNLzGW6dcDwJSGlFKUaBVLMmgWR0CwIZ9H6MzedX2UKGgGaAloD0MIM6g2OBG9C8CUhpRSlGgVSzJoFkdAsCFdgBtDUnV9lChoBmgJaA9DCJpeYizTjxDAlIaUUpRoFUsyaBZHQLAhP8zQ/ot1fZQoaAZoCWgPQwjvWddoOTAFwJSGlFKUaBVLMmgWR0CwIpTjin50dX2UKGgGaAloD0MIGxGMg0vnCcCUhpRSlGgVSzJoFkdAsCJXPiT+vXV9lChoBmgJaA9DCE4pr5XQfQXAlIaUUpRoFUsyaBZHQLAiFQaJhv11fZQoaAZoCWgPQwgNAFXcuOURwJSGlFKUaBVLMmgWR0CwIfb/4qPPdX2UKGgGaAloD0MIvXDnwkgPFMCUhpRSlGgVSzJoFkdAsCMAfU4JeHV9lChoBmgJaA9DCNgqweJwZhfAlIaUUpRoFUsyaBZHQLAiws54nnd1fZQoaAZoCWgPQwiDMLd7uT8dwJSGlFKUaBVLMmgWR0CwIoCVfNRndX2UKGgGaAloD0MIIxRbQdPSCcCUhpRSlGgVSzJoFkdAsCJihakhzXV9lChoBmgJaA9DCN9sc2N64grAlIaUUpRoFUsyaBZHQLAjcxs2vSt1fZQoaAZoCWgPQwjj/iPToVMOwJSGlFKUaBVLMmgWR0CwIzWFSKm9dX2UKGgGaAloD0MIOx3Iemo1EcCUhpRSlGgVSzJoFkdAsCLztUn5SHV9lChoBmgJaA9DCBGLGHYY8wfAlIaUUpRoFUsyaBZHQLAi1cFhXsB1fZQoaAZoCWgPQwhfYizTL1EHwJSGlFKUaBVLMmgWR0CwI+VzMibEdX2UKGgGaAloD0MIw7gbRGuVGcCUhpRSlGgVSzJoFkdAsCOnv8ZUDXV9lChoBmgJaA9DCJlnJa34hgXAlIaUUpRoFUsyaBZHQLAjZZDiOvN1fZQoaAZoCWgPQwi/02TG2+oMwJSGlFKUaBVLMmgWR0CwI0ePmxMWdX2UKGgGaAloD0MIJF6ezhWlD8CUhpRSlGgVSzJoFkdAsCRV0bLlm3V9lChoBmgJaA9DCGlXIeUndQXAlIaUUpRoFUsyaBZHQLAkGBcAzYV1fZQoaAZoCWgPQwinsijsovgTwJSGlFKUaBVLMmgWR0CwI9YLThHcdX2UKGgGaAloD0MId6IkJNKWB8CUhpRSlGgVSzJoFkdAsCO4AaNuL3V9lChoBmgJaA9DCNFcp5GWqgnAlIaUUpRoFUsyaBZHQLAkwVgQYk51fZQoaAZoCWgPQwjxLhfxnTgSwJSGlFKUaBVLMmgWR0CwJIOZLIxQdX2UKGgGaAloD0MI78UX7fHCE8CUhpRSlGgVSzJoFkdAsCRBT/ACXHV9lChoBmgJaA9DCJ1LcVXZtwXAlIaUUpRoFUsyaBZHQLAkI10T1011fZQoaAZoCWgPQwjJrUm3JdIIwJSGlFKUaBVLMmgWR0CwJSysKb8WdX2UKGgGaAloD0MI0Joff2nRCMCUhpRSlGgVSzJoFkdAsCTu7wrlNnV9lChoBmgJaA9DCDfBN02fvQ7AlIaUUpRoFUsyaBZHQLAkrJ9y9251fZQoaAZoCWgPQwjLvFXXoToJwJSGlFKUaBVLMmgWR0CwJI6WcBludX2UKGgGaAloD0MIIqrwZ3jTB8CUhpRSlGgVSzJoFkdAsCWZb6guiHV9lChoBmgJaA9DCPFiYYicfgvAlIaUUpRoFUsyaBZHQLAlXBxPwd91fZQoaAZoCWgPQwjoTUUqjA0TwJSGlFKUaBVLMmgWR0CwJRo2bXpXdX2UKGgGaAloD0MIdy/3yVHADcCUhpRSlGgVSzJoFkdAsCT8dyT6i3V9lChoBmgJaA9DCM3IIHcRZg7AlIaUUpRoFUsyaBZHQLAmCuV5a/11fZQoaAZoCWgPQwibjZWYZyUGwJSGlFKUaBVLMmgWR0CwJc0srd30dX2UKGgGaAloD0MIeJlho6z/CsCUhpRSlGgVSzJoFkdAsCWK5e7cwnV9lChoBmgJaA9DCOXQItv53gPAlIaUUpRoFUsyaBZHQLAlbNTLns91fZQoaAZoCWgPQwhegH106ooJwJSGlFKUaBVLMmgWR0CwJnh3iaRZdX2UKGgGaAloD0MIWRMLfEWXBcCUhpRSlGgVSzJoFkdAsCY60jTrmnV9lChoBmgJaA9DCBMQk3AhrwzAlIaUUpRoFUsyaBZHQLAl+I/JNj91fZQoaAZoCWgPQwiVRPZBloUOwJSGlFKUaBVLMmgWR0CwJdp/9YOldX2UKGgGaAloD0MI6rKY2HzsEcCUhpRSlGgVSzJoFkdAsCbmitaIN3V9lChoBmgJaA9DCEVHcvkPiRHAlIaUUpRoFUsyaBZHQLAmqNiYsup1fZQoaAZoCWgPQwinIarwZ7gOwJSGlFKUaBVLMmgWR0CwJmaSowVTdX2UKGgGaAloD0MIGAeXjjkPBcCUhpRSlGgVSzJoFkdAsCZId92HL3V9lChoBmgJaA9DCPYpx2RxbxHAlIaUUpRoFUsyaBZHQLAnVNvwVj91fZQoaAZoCWgPQwhR9SudD68KwJSGlFKUaBVLMmgWR0CwJxcxwhnrdX2UKGgGaAloD0MIyJV6FoQyC8CUhpRSlGgVSzJoFkdAsCbU81XNknV9lChoBmgJaA9DCN44Kcx73AzAlIaUUpRoFUsyaBZHQLAmtt/nW8R1fZQoaAZoCWgPQwhCsKpefmcJwJSGlFKUaBVLMmgWR0CwJ8NNBWxRdX2UKGgGaAloD0MIZ9e9FYm5F8CUhpRSlGgVSzJoFkdAsCeFj7Q9inV9lChoBmgJaA9DCNNNYhBY6RjAlIaUUpRoFUsyaBZHQLAnQ0JF9a51fZQoaAZoCWgPQwiA1vz4S2sIwJSGlFKUaBVLMmgWR0CwJyUqDsdDdX2UKGgGaAloD0MIU82spYDUCMCUhpRSlGgVSzJoFkdAsCgxfMOf/XV9lChoBmgJaA9DCKVKlL2lfAnAlIaUUpRoFUsyaBZHQLAn88e0Xxh1fZQoaAZoCWgPQwh5r1qZ8OsNwJSGlFKUaBVLMmgWR0CwJ7Gi1y/9dX2UKGgGaAloD0MIvwtbs5WXFMCUhpRSlGgVSzJoFkdAsCeTtAs053V9lChoBmgJaA9DCODVcmcmqBbAlIaUUpRoFUsyaBZHQLAoo544ZMt1fZQoaAZoCWgPQwjMXUvIB30DwJSGlFKUaBVLMmgWR0CwKGX+VC5VdX2UKGgGaAloD0MIOMDMd/AzDsCUhpRSlGgVSzJoFkdAsCgjyVfNRnV9lChoBmgJaA9DCHdJnBVR0w3AlIaUUpRoFUsyaBZHQLAoBchC+lF1fZQoaAZoCWgPQwhHOgMjLysGwJSGlFKUaBVLMmgWR0CwKRMDSw4bdX2UKGgGaAloD0MI/u4dNSZkCsCUhpRSlGgVSzJoFkdAsCjVWKdhAnV9lChoBmgJaA9DCAqEnWLVYAzAlIaUUpRoFUsyaBZHQLAokw5/9YR1fZQoaAZoCWgPQwjYKyy4H3AKwJSGlFKUaBVLMmgWR0CwKHUBCD28dX2UKGgGaAloD0MIAvG6fsFuBcCUhpRSlGgVSzJoFkdAsCl/ua4MF3V9lChoBmgJaA9DCHHLR1LSAwnAlIaUUpRoFUsyaBZHQLApQiEQGwB1fZQoaAZoCWgPQwivIqMDktATwJSGlFKUaBVLMmgWR0CwKP/zOHFhdX2UKGgGaAloD0MIHsNjP4vFB8CUhpRSlGgVSzJoFkdAsCjh1s+FDnV9lChoBmgJaA9DCPEr1nCRmxXAlIaUUpRoFUsyaBZHQLAp83gDRtx1fZQoaAZoCWgPQwgBT1q4rFISwJSGlFKUaBVLMmgWR0CwKbXJT2nLdX2UKGgGaAloD0MIzO7Jw0KtD8CUhpRSlGgVSzJoFkdAsClzl8w6AHV9lChoBmgJaA9DCM14W+m1yRTAlIaUUpRoFUsyaBZHQLApVbvw3Hd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 53572, "n_steps": 7, "gamma": 0.98, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (821 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -4.174644683813677, "std_reward": 1.384180431884444, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-11T11:55:07.469418"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6da667f2ab9f68dee3f7136f09bc6fc5767637b645333cc384b76d70dba9024
3
+ size 3056