Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -4.17 +/- 1.38
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de8e51202e03749adca5348f07fbc80c1807673e54b2281dd3760130df1f70eb
|
3 |
+
size 108041
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f402c7e1700>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f402c7dadb0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1500016,
|
45 |
+
"_total_timesteps": 1500000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1676112362967978006,
|
50 |
+
"learning_rate": 0.001,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWza0PnG0fr/1UvA+gA39vsuhy7tGW7g/4dX+PLFthz/hJWK+k3AWvx2ypT+belq/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1zmwP8HZhr9bBVQ/8xBpv9NmvL1FjnA/gm6evSdjfz8YWrs6z7YkvxuKVT+J2qS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABbNrQ+cbR+v/VS8D5CqHU/h7QoPGPuPT6ADf2+y6HLu0ZbuD85Oou/k0JWP34xo7/h1f48sW2HP+ElYr4Ysx8/Y9ifv1Mu7T6TcBa/HbKlP5t6Wr/Tr7M/mWMXvlkms72UaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.3519772 -0.9949408 0.4693829 ]\n [-0.49424362 -0.00621436 1.4402854 ]\n [ 0.03110784 1.058035 -0.22084762]\n [-0.58765525 1.2944981 -0.8534333 ]]",
|
60 |
+
"desired_goal": "[[ 1.3767651 -1.0535203 0.8282067 ]\n [-0.9104149 -0.091993 0.93967086]\n [-0.07735921 0.9976067 0.00142938]\n [-0.64341444 0.8341386 -1.2879192 ]]",
|
61 |
+
"observation": "[[ 0.3519772 -0.9949408 0.4693829 0.95959866 0.01029695 0.18547969]\n [-0.49424362 -0.00621436 1.4402854 -1.0877143 0.83695334 -1.2749479 ]\n [ 0.03110784 1.058035 -0.22084762 0.6238265 -1.2487911 0.46324405]\n [-0.58765525 1.2944981 -0.8534333 1.4038032 -0.14784087 -0.08747549]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+h60vbGatT3KcRc+QhssPCwmvr2sbH490o8vPQKUgL2/ApI+THqXPLXR4L1jOCE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.08794971 0.08867396 0.14789501]\n [ 0.01050455 -0.09284624 0.06211536]\n [ 0.04286177 -0.0627823 0.2851772 ]\n [ 0.01849093 -0.10977498 0.03936042]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": -1.066666666660332e-05,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE7u2t1syCMCUhpRSlIwBbJRLMowBdJRHQLAdjNsFdLR1fZQoaAZoCWgPQwjwoxr2e0IIwJSGlFKUaBVLMmgWR0CwHU9jkMkQdX2UKGgGaAloD0MIIO1/gLXKA8CUhpRSlGgVSzJoFkdAsB0NV6u4gHV9lChoBmgJaA9DCCOHiJtTaQjAlIaUUpRoFUsyaBZHQLAc74yoGY91fZQoaAZoCWgPQwhnutdJfZkDwJSGlFKUaBVLMmgWR0CwHj3MINVjdX2UKGgGaAloD0MILC0j9Z5KBcCUhpRSlGgVSzJoFkdAsB4AZDRc/3V9lChoBmgJaA9DCAINNnUelQbAlIaUUpRoFUsyaBZHQLAdvmXw9aF1fZQoaAZoCWgPQwgZkL3e/YETwJSGlFKUaBVLMmgWR0CwHaCaVlf7dX2UKGgGaAloD0MITFXa4ho/CcCUhpRSlGgVSzJoFkdAsB7tDb8FZHV9lChoBmgJaA9DCEvl7QinhQ/AlIaUUpRoFUsyaBZHQLAer8xbjcV1fZQoaAZoCWgPQwgzcEBLV9AFwJSGlFKUaBVLMmgWR0CwHm3x4IKMdX2UKGgGaAloD0MIjuVd9YAZDcCUhpRSlGgVSzJoFkdAsB5QFwDNhXV9lChoBmgJaA9DCMMuih742AzAlIaUUpRoFUsyaBZHQLAfo51eSjh1fZQoaAZoCWgPQwgfMXpuoYsMwJSGlFKUaBVLMmgWR0CwH2Y7ihnKdX2UKGgGaAloD0MICRoziXrhA8CUhpRSlGgVSzJoFkdAsB8kVTJhfHV9lChoBmgJaA9DCIRm170ViQ7AlIaUUpRoFUsyaBZHQLAfBpeu3c51fZQoaAZoCWgPQwhCCp5CrpQIwJSGlFKUaBVLMmgWR0CwIF2TcIqtdX2UKGgGaAloD0MI6jwq/u9IC8CUhpRSlGgVSzJoFkdAsCAgJgLJCHV9lChoBmgJaA9DCPQyiuWW1gPAlIaUUpRoFUsyaBZHQLAf3j2i+L51fZQoaAZoCWgPQwgiqBq9GmADwJSGlFKUaBVLMmgWR0CwH8CBshxHdX2UKGgGaAloD0MIhX07iQivHsCUhpRSlGgVSzJoFkdAsCEb8baRIXV9lChoBmgJaA9DCH5S7dPxGAzAlIaUUpRoFUsyaBZHQLAg3qS5iEx1fZQoaAZoCWgPQwgk8Ief/34QwJSGlFKUaBVLMmgWR0CwIJy7CiyqdX2UKGgGaAloD0MI5Gn5gav8EMCUhpRSlGgVSzJoFkdAsCB+/qPfbnV9lChoBmgJaA9DCPzjvWplggjAlIaUUpRoFUsyaBZHQLAh3JkoWpJ1fZQoaAZoCWgPQwhNLzGW6dcDwJSGlFKUaBVLMmgWR0CwIZ9H6MzedX2UKGgGaAloD0MIM6g2OBG9C8CUhpRSlGgVSzJoFkdAsCFdgBtDUnV9lChoBmgJaA9DCJpeYizTjxDAlIaUUpRoFUsyaBZHQLAhP8zQ/ot1fZQoaAZoCWgPQwjvWddoOTAFwJSGlFKUaBVLMmgWR0CwIpTjin50dX2UKGgGaAloD0MIGxGMg0vnCcCUhpRSlGgVSzJoFkdAsCJXPiT+vXV9lChoBmgJaA9DCE4pr5XQfQXAlIaUUpRoFUsyaBZHQLAiFQaJhv11fZQoaAZoCWgPQwgNAFXcuOURwJSGlFKUaBVLMmgWR0CwIfb/4qPPdX2UKGgGaAloD0MIvXDnwkgPFMCUhpRSlGgVSzJoFkdAsCMAfU4JeHV9lChoBmgJaA9DCNgqweJwZhfAlIaUUpRoFUsyaBZHQLAiws54nnd1fZQoaAZoCWgPQwiDMLd7uT8dwJSGlFKUaBVLMmgWR0CwIoCVfNRndX2UKGgGaAloD0MIIxRbQdPSCcCUhpRSlGgVSzJoFkdAsCJihakhzXV9lChoBmgJaA9DCN9sc2N64grAlIaUUpRoFUsyaBZHQLAjcxs2vSt1fZQoaAZoCWgPQwjj/iPToVMOwJSGlFKUaBVLMmgWR0CwIzWFSKm9dX2UKGgGaAloD0MIOx3Iemo1EcCUhpRSlGgVSzJoFkdAsCLztUn5SHV9lChoBmgJaA9DCBGLGHYY8wfAlIaUUpRoFUsyaBZHQLAi1cFhXsB1fZQoaAZoCWgPQwhfYizTL1EHwJSGlFKUaBVLMmgWR0CwI+VzMibEdX2UKGgGaAloD0MIw7gbRGuVGcCUhpRSlGgVSzJoFkdAsCOnv8ZUDXV9lChoBmgJaA9DCJlnJa34hgXAlIaUUpRoFUsyaBZHQLAjZZDiOvN1fZQoaAZoCWgPQwi/02TG2+oMwJSGlFKUaBVLMmgWR0CwI0ePmxMWdX2UKGgGaAloD0MIJF6ezhWlD8CUhpRSlGgVSzJoFkdAsCRV0bLlm3V9lChoBmgJaA9DCGlXIeUndQXAlIaUUpRoFUsyaBZHQLAkGBcAzYV1fZQoaAZoCWgPQwinsijsovgTwJSGlFKUaBVLMmgWR0CwI9YLThHcdX2UKGgGaAloD0MId6IkJNKWB8CUhpRSlGgVSzJoFkdAsCO4AaNuL3V9lChoBmgJaA9DCNFcp5GWqgnAlIaUUpRoFUsyaBZHQLAkwVgQYk51fZQoaAZoCWgPQwjxLhfxnTgSwJSGlFKUaBVLMmgWR0CwJIOZLIxQdX2UKGgGaAloD0MI78UX7fHCE8CUhpRSlGgVSzJoFkdAsCRBT/ACXHV9lChoBmgJaA9DCJ1LcVXZtwXAlIaUUpRoFUsyaBZHQLAkI10T1011fZQoaAZoCWgPQwjJrUm3JdIIwJSGlFKUaBVLMmgWR0CwJSysKb8WdX2UKGgGaAloD0MI0Joff2nRCMCUhpRSlGgVSzJoFkdAsCTu7wrlNnV9lChoBmgJaA9DCDfBN02fvQ7AlIaUUpRoFUsyaBZHQLAkrJ9y9251fZQoaAZoCWgPQwjLvFXXoToJwJSGlFKUaBVLMmgWR0CwJI6WcBludX2UKGgGaAloD0MIIqrwZ3jTB8CUhpRSlGgVSzJoFkdAsCWZb6guiHV9lChoBmgJaA9DCPFiYYicfgvAlIaUUpRoFUsyaBZHQLAlXBxPwd91fZQoaAZoCWgPQwjoTUUqjA0TwJSGlFKUaBVLMmgWR0CwJRo2bXpXdX2UKGgGaAloD0MIdy/3yVHADcCUhpRSlGgVSzJoFkdAsCT8dyT6i3V9lChoBmgJaA9DCM3IIHcRZg7AlIaUUpRoFUsyaBZHQLAmCuV5a/11fZQoaAZoCWgPQwibjZWYZyUGwJSGlFKUaBVLMmgWR0CwJc0srd30dX2UKGgGaAloD0MIeJlho6z/CsCUhpRSlGgVSzJoFkdAsCWK5e7cwnV9lChoBmgJaA9DCOXQItv53gPAlIaUUpRoFUsyaBZHQLAlbNTLns91fZQoaAZoCWgPQwhegH106ooJwJSGlFKUaBVLMmgWR0CwJnh3iaRZdX2UKGgGaAloD0MIWRMLfEWXBcCUhpRSlGgVSzJoFkdAsCY60jTrmnV9lChoBmgJaA9DCBMQk3AhrwzAlIaUUpRoFUsyaBZHQLAl+I/JNj91fZQoaAZoCWgPQwiVRPZBloUOwJSGlFKUaBVLMmgWR0CwJdp/9YOldX2UKGgGaAloD0MI6rKY2HzsEcCUhpRSlGgVSzJoFkdAsCbmitaIN3V9lChoBmgJaA9DCEVHcvkPiRHAlIaUUpRoFUsyaBZHQLAmqNiYsup1fZQoaAZoCWgPQwinIarwZ7gOwJSGlFKUaBVLMmgWR0CwJmaSowVTdX2UKGgGaAloD0MIGAeXjjkPBcCUhpRSlGgVSzJoFkdAsCZId92HL3V9lChoBmgJaA9DCPYpx2RxbxHAlIaUUpRoFUsyaBZHQLAnVNvwVj91fZQoaAZoCWgPQwhR9SudD68KwJSGlFKUaBVLMmgWR0CwJxcxwhnrdX2UKGgGaAloD0MIyJV6FoQyC8CUhpRSlGgVSzJoFkdAsCbU81XNknV9lChoBmgJaA9DCN44Kcx73AzAlIaUUpRoFUsyaBZHQLAmtt/nW8R1fZQoaAZoCWgPQwhCsKpefmcJwJSGlFKUaBVLMmgWR0CwJ8NNBWxRdX2UKGgGaAloD0MIZ9e9FYm5F8CUhpRSlGgVSzJoFkdAsCeFj7Q9inV9lChoBmgJaA9DCNNNYhBY6RjAlIaUUpRoFUsyaBZHQLAnQ0JF9a51fZQoaAZoCWgPQwiA1vz4S2sIwJSGlFKUaBVLMmgWR0CwJyUqDsdDdX2UKGgGaAloD0MIU82spYDUCMCUhpRSlGgVSzJoFkdAsCgxfMOf/XV9lChoBmgJaA9DCKVKlL2lfAnAlIaUUpRoFUsyaBZHQLAn88e0Xxh1fZQoaAZoCWgPQwh5r1qZ8OsNwJSGlFKUaBVLMmgWR0CwJ7Gi1y/9dX2UKGgGaAloD0MIvwtbs5WXFMCUhpRSlGgVSzJoFkdAsCeTtAs053V9lChoBmgJaA9DCODVcmcmqBbAlIaUUpRoFUsyaBZHQLAoo544ZMt1fZQoaAZoCWgPQwjMXUvIB30DwJSGlFKUaBVLMmgWR0CwKGX+VC5VdX2UKGgGaAloD0MIOMDMd/AzDsCUhpRSlGgVSzJoFkdAsCgjyVfNRnV9lChoBmgJaA9DCHdJnBVR0w3AlIaUUpRoFUsyaBZHQLAoBchC+lF1fZQoaAZoCWgPQwhHOgMjLysGwJSGlFKUaBVLMmgWR0CwKRMDSw4bdX2UKGgGaAloD0MI/u4dNSZkCsCUhpRSlGgVSzJoFkdAsCjVWKdhAnV9lChoBmgJaA9DCAqEnWLVYAzAlIaUUpRoFUsyaBZHQLAokw5/9YR1fZQoaAZoCWgPQwjYKyy4H3AKwJSGlFKUaBVLMmgWR0CwKHUBCD28dX2UKGgGaAloD0MIAvG6fsFuBcCUhpRSlGgVSzJoFkdAsCl/ua4MF3V9lChoBmgJaA9DCHHLR1LSAwnAlIaUUpRoFUsyaBZHQLApQiEQGwB1fZQoaAZoCWgPQwivIqMDktATwJSGlFKUaBVLMmgWR0CwKP/zOHFhdX2UKGgGaAloD0MIHsNjP4vFB8CUhpRSlGgVSzJoFkdAsCjh1s+FDnV9lChoBmgJaA9DCPEr1nCRmxXAlIaUUpRoFUsyaBZHQLAp83gDRtx1fZQoaAZoCWgPQwgBT1q4rFISwJSGlFKUaBVLMmgWR0CwKbXJT2nLdX2UKGgGaAloD0MIzO7Jw0KtD8CUhpRSlGgVSzJoFkdAsClzl8w6AHV9lChoBmgJaA9DCM14W+m1yRTAlIaUUpRoFUsyaBZHQLApVbvw3Hd1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 53572,
|
87 |
+
"n_steps": 7,
|
88 |
+
"gamma": 0.98,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:805dac8c63176caa1b8094b253b0620214b0e68bdac1eef6fb28f79fa8bad4a4
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efb76ef41666f152d012075582e0e159f36d0b8c2474e68d9f8c883f45a77de9
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f402c7e1700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f402c7dadb0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500016, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676112362967978006, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWza0PnG0fr/1UvA+gA39vsuhy7tGW7g/4dX+PLFthz/hJWK+k3AWvx2ypT+belq/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1zmwP8HZhr9bBVQ/8xBpv9NmvL1FjnA/gm6evSdjfz8YWrs6z7YkvxuKVT+J2qS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABbNrQ+cbR+v/VS8D5CqHU/h7QoPGPuPT6ADf2+y6HLu0ZbuD85Oou/k0JWP34xo7/h1f48sW2HP+ElYr4Ysx8/Y9ifv1Mu7T6TcBa/HbKlP5t6Wr/Tr7M/mWMXvlkms72UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3519772 -0.9949408 0.4693829 ]\n [-0.49424362 -0.00621436 1.4402854 ]\n [ 0.03110784 1.058035 -0.22084762]\n [-0.58765525 1.2944981 -0.8534333 ]]", "desired_goal": "[[ 1.3767651 -1.0535203 0.8282067 ]\n [-0.9104149 -0.091993 0.93967086]\n [-0.07735921 0.9976067 0.00142938]\n [-0.64341444 0.8341386 -1.2879192 ]]", "observation": "[[ 0.3519772 -0.9949408 0.4693829 0.95959866 0.01029695 0.18547969]\n [-0.49424362 -0.00621436 1.4402854 -1.0877143 0.83695334 -1.2749479 ]\n [ 0.03110784 1.058035 -0.22084762 0.6238265 -1.2487911 0.46324405]\n [-0.58765525 1.2944981 -0.8534333 1.4038032 -0.14784087 -0.08747549]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+h60vbGatT3KcRc+QhssPCwmvr2sbH490o8vPQKUgL2/ApI+THqXPLXR4L1jOCE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08794971 0.08867396 0.14789501]\n [ 0.01050455 -0.09284624 0.06211536]\n [ 0.04286177 -0.0627823 0.2851772 ]\n [ 0.01849093 -0.10977498 0.03936042]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1.066666666660332e-05, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE7u2t1syCMCUhpRSlIwBbJRLMowBdJRHQLAdjNsFdLR1fZQoaAZoCWgPQwjwoxr2e0IIwJSGlFKUaBVLMmgWR0CwHU9jkMkQdX2UKGgGaAloD0MIIO1/gLXKA8CUhpRSlGgVSzJoFkdAsB0NV6u4gHV9lChoBmgJaA9DCCOHiJtTaQjAlIaUUpRoFUsyaBZHQLAc74yoGY91fZQoaAZoCWgPQwhnutdJfZkDwJSGlFKUaBVLMmgWR0CwHj3MINVjdX2UKGgGaAloD0MILC0j9Z5KBcCUhpRSlGgVSzJoFkdAsB4AZDRc/3V9lChoBmgJaA9DCAINNnUelQbAlIaUUpRoFUsyaBZHQLAdvmXw9aF1fZQoaAZoCWgPQwgZkL3e/YETwJSGlFKUaBVLMmgWR0CwHaCaVlf7dX2UKGgGaAloD0MITFXa4ho/CcCUhpRSlGgVSzJoFkdAsB7tDb8FZHV9lChoBmgJaA9DCEvl7QinhQ/AlIaUUpRoFUsyaBZHQLAer8xbjcV1fZQoaAZoCWgPQwgzcEBLV9AFwJSGlFKUaBVLMmgWR0CwHm3x4IKMdX2UKGgGaAloD0MIjuVd9YAZDcCUhpRSlGgVSzJoFkdAsB5QFwDNhXV9lChoBmgJaA9DCMMuih742AzAlIaUUpRoFUsyaBZHQLAfo51eSjh1fZQoaAZoCWgPQwgfMXpuoYsMwJSGlFKUaBVLMmgWR0CwH2Y7ihnKdX2UKGgGaAloD0MICRoziXrhA8CUhpRSlGgVSzJoFkdAsB8kVTJhfHV9lChoBmgJaA9DCIRm170ViQ7AlIaUUpRoFUsyaBZHQLAfBpeu3c51fZQoaAZoCWgPQwhCCp5CrpQIwJSGlFKUaBVLMmgWR0CwIF2TcIqtdX2UKGgGaAloD0MI6jwq/u9IC8CUhpRSlGgVSzJoFkdAsCAgJgLJCHV9lChoBmgJaA9DCPQyiuWW1gPAlIaUUpRoFUsyaBZHQLAf3j2i+L51fZQoaAZoCWgPQwgiqBq9GmADwJSGlFKUaBVLMmgWR0CwH8CBshxHdX2UKGgGaAloD0MIhX07iQivHsCUhpRSlGgVSzJoFkdAsCEb8baRIXV9lChoBmgJaA9DCH5S7dPxGAzAlIaUUpRoFUsyaBZHQLAg3qS5iEx1fZQoaAZoCWgPQwgk8Ief/34QwJSGlFKUaBVLMmgWR0CwIJy7CiyqdX2UKGgGaAloD0MI5Gn5gav8EMCUhpRSlGgVSzJoFkdAsCB+/qPfbnV9lChoBmgJaA9DCPzjvWplggjAlIaUUpRoFUsyaBZHQLAh3JkoWpJ1fZQoaAZoCWgPQwhNLzGW6dcDwJSGlFKUaBVLMmgWR0CwIZ9H6MzedX2UKGgGaAloD0MIM6g2OBG9C8CUhpRSlGgVSzJoFkdAsCFdgBtDUnV9lChoBmgJaA9DCJpeYizTjxDAlIaUUpRoFUsyaBZHQLAhP8zQ/ot1fZQoaAZoCWgPQwjvWddoOTAFwJSGlFKUaBVLMmgWR0CwIpTjin50dX2UKGgGaAloD0MIGxGMg0vnCcCUhpRSlGgVSzJoFkdAsCJXPiT+vXV9lChoBmgJaA9DCE4pr5XQfQXAlIaUUpRoFUsyaBZHQLAiFQaJhv11fZQoaAZoCWgPQwgNAFXcuOURwJSGlFKUaBVLMmgWR0CwIfb/4qPPdX2UKGgGaAloD0MIvXDnwkgPFMCUhpRSlGgVSzJoFkdAsCMAfU4JeHV9lChoBmgJaA9DCNgqweJwZhfAlIaUUpRoFUsyaBZHQLAiws54nnd1fZQoaAZoCWgPQwiDMLd7uT8dwJSGlFKUaBVLMmgWR0CwIoCVfNRndX2UKGgGaAloD0MIIxRbQdPSCcCUhpRSlGgVSzJoFkdAsCJihakhzXV9lChoBmgJaA9DCN9sc2N64grAlIaUUpRoFUsyaBZHQLAjcxs2vSt1fZQoaAZoCWgPQwjj/iPToVMOwJSGlFKUaBVLMmgWR0CwIzWFSKm9dX2UKGgGaAloD0MIOx3Iemo1EcCUhpRSlGgVSzJoFkdAsCLztUn5SHV9lChoBmgJaA9DCBGLGHYY8wfAlIaUUpRoFUsyaBZHQLAi1cFhXsB1fZQoaAZoCWgPQwhfYizTL1EHwJSGlFKUaBVLMmgWR0CwI+VzMibEdX2UKGgGaAloD0MIw7gbRGuVGcCUhpRSlGgVSzJoFkdAsCOnv8ZUDXV9lChoBmgJaA9DCJlnJa34hgXAlIaUUpRoFUsyaBZHQLAjZZDiOvN1fZQoaAZoCWgPQwi/02TG2+oMwJSGlFKUaBVLMmgWR0CwI0ePmxMWdX2UKGgGaAloD0MIJF6ezhWlD8CUhpRSlGgVSzJoFkdAsCRV0bLlm3V9lChoBmgJaA9DCGlXIeUndQXAlIaUUpRoFUsyaBZHQLAkGBcAzYV1fZQoaAZoCWgPQwinsijsovgTwJSGlFKUaBVLMmgWR0CwI9YLThHcdX2UKGgGaAloD0MId6IkJNKWB8CUhpRSlGgVSzJoFkdAsCO4AaNuL3V9lChoBmgJaA9DCNFcp5GWqgnAlIaUUpRoFUsyaBZHQLAkwVgQYk51fZQoaAZoCWgPQwjxLhfxnTgSwJSGlFKUaBVLMmgWR0CwJIOZLIxQdX2UKGgGaAloD0MI78UX7fHCE8CUhpRSlGgVSzJoFkdAsCRBT/ACXHV9lChoBmgJaA9DCJ1LcVXZtwXAlIaUUpRoFUsyaBZHQLAkI10T1011fZQoaAZoCWgPQwjJrUm3JdIIwJSGlFKUaBVLMmgWR0CwJSysKb8WdX2UKGgGaAloD0MI0Joff2nRCMCUhpRSlGgVSzJoFkdAsCTu7wrlNnV9lChoBmgJaA9DCDfBN02fvQ7AlIaUUpRoFUsyaBZHQLAkrJ9y9251fZQoaAZoCWgPQwjLvFXXoToJwJSGlFKUaBVLMmgWR0CwJI6WcBludX2UKGgGaAloD0MIIqrwZ3jTB8CUhpRSlGgVSzJoFkdAsCWZb6guiHV9lChoBmgJaA9DCPFiYYicfgvAlIaUUpRoFUsyaBZHQLAlXBxPwd91fZQoaAZoCWgPQwjoTUUqjA0TwJSGlFKUaBVLMmgWR0CwJRo2bXpXdX2UKGgGaAloD0MIdy/3yVHADcCUhpRSlGgVSzJoFkdAsCT8dyT6i3V9lChoBmgJaA9DCM3IIHcRZg7AlIaUUpRoFUsyaBZHQLAmCuV5a/11fZQoaAZoCWgPQwibjZWYZyUGwJSGlFKUaBVLMmgWR0CwJc0srd30dX2UKGgGaAloD0MIeJlho6z/CsCUhpRSlGgVSzJoFkdAsCWK5e7cwnV9lChoBmgJaA9DCOXQItv53gPAlIaUUpRoFUsyaBZHQLAlbNTLns91fZQoaAZoCWgPQwhegH106ooJwJSGlFKUaBVLMmgWR0CwJnh3iaRZdX2UKGgGaAloD0MIWRMLfEWXBcCUhpRSlGgVSzJoFkdAsCY60jTrmnV9lChoBmgJaA9DCBMQk3AhrwzAlIaUUpRoFUsyaBZHQLAl+I/JNj91fZQoaAZoCWgPQwiVRPZBloUOwJSGlFKUaBVLMmgWR0CwJdp/9YOldX2UKGgGaAloD0MI6rKY2HzsEcCUhpRSlGgVSzJoFkdAsCbmitaIN3V9lChoBmgJaA9DCEVHcvkPiRHAlIaUUpRoFUsyaBZHQLAmqNiYsup1fZQoaAZoCWgPQwinIarwZ7gOwJSGlFKUaBVLMmgWR0CwJmaSowVTdX2UKGgGaAloD0MIGAeXjjkPBcCUhpRSlGgVSzJoFkdAsCZId92HL3V9lChoBmgJaA9DCPYpx2RxbxHAlIaUUpRoFUsyaBZHQLAnVNvwVj91fZQoaAZoCWgPQwhR9SudD68KwJSGlFKUaBVLMmgWR0CwJxcxwhnrdX2UKGgGaAloD0MIyJV6FoQyC8CUhpRSlGgVSzJoFkdAsCbU81XNknV9lChoBmgJaA9DCN44Kcx73AzAlIaUUpRoFUsyaBZHQLAmtt/nW8R1fZQoaAZoCWgPQwhCsKpefmcJwJSGlFKUaBVLMmgWR0CwJ8NNBWxRdX2UKGgGaAloD0MIZ9e9FYm5F8CUhpRSlGgVSzJoFkdAsCeFj7Q9inV9lChoBmgJaA9DCNNNYhBY6RjAlIaUUpRoFUsyaBZHQLAnQ0JF9a51fZQoaAZoCWgPQwiA1vz4S2sIwJSGlFKUaBVLMmgWR0CwJyUqDsdDdX2UKGgGaAloD0MIU82spYDUCMCUhpRSlGgVSzJoFkdAsCgxfMOf/XV9lChoBmgJaA9DCKVKlL2lfAnAlIaUUpRoFUsyaBZHQLAn88e0Xxh1fZQoaAZoCWgPQwh5r1qZ8OsNwJSGlFKUaBVLMmgWR0CwJ7Gi1y/9dX2UKGgGaAloD0MIvwtbs5WXFMCUhpRSlGgVSzJoFkdAsCeTtAs053V9lChoBmgJaA9DCODVcmcmqBbAlIaUUpRoFUsyaBZHQLAoo544ZMt1fZQoaAZoCWgPQwjMXUvIB30DwJSGlFKUaBVLMmgWR0CwKGX+VC5VdX2UKGgGaAloD0MIOMDMd/AzDsCUhpRSlGgVSzJoFkdAsCgjyVfNRnV9lChoBmgJaA9DCHdJnBVR0w3AlIaUUpRoFUsyaBZHQLAoBchC+lF1fZQoaAZoCWgPQwhHOgMjLysGwJSGlFKUaBVLMmgWR0CwKRMDSw4bdX2UKGgGaAloD0MI/u4dNSZkCsCUhpRSlGgVSzJoFkdAsCjVWKdhAnV9lChoBmgJaA9DCAqEnWLVYAzAlIaUUpRoFUsyaBZHQLAokw5/9YR1fZQoaAZoCWgPQwjYKyy4H3AKwJSGlFKUaBVLMmgWR0CwKHUBCD28dX2UKGgGaAloD0MIAvG6fsFuBcCUhpRSlGgVSzJoFkdAsCl/ua4MF3V9lChoBmgJaA9DCHHLR1LSAwnAlIaUUpRoFUsyaBZHQLApQiEQGwB1fZQoaAZoCWgPQwivIqMDktATwJSGlFKUaBVLMmgWR0CwKP/zOHFhdX2UKGgGaAloD0MIHsNjP4vFB8CUhpRSlGgVSzJoFkdAsCjh1s+FDnV9lChoBmgJaA9DCPEr1nCRmxXAlIaUUpRoFUsyaBZHQLAp83gDRtx1fZQoaAZoCWgPQwgBT1q4rFISwJSGlFKUaBVLMmgWR0CwKbXJT2nLdX2UKGgGaAloD0MIzO7Jw0KtD8CUhpRSlGgVSzJoFkdAsClzl8w6AHV9lChoBmgJaA9DCM14W+m1yRTAlIaUUpRoFUsyaBZHQLApVbvw3Hd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 53572, "n_steps": 7, "gamma": 0.98, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (821 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -4.174644683813677, "std_reward": 1.384180431884444, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-11T11:55:07.469418"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6da667f2ab9f68dee3f7136f09bc6fc5767637b645333cc384b76d70dba9024
|
3 |
+
size 3056
|