File size: 1,953 Bytes
f66e9c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
language:
- en
license: apache-2.0
base_model: distilbert-base-cased
tags:
- pytorch
- movie-review-sentiment
- BertForSequenceClassification
- generated_from_trainer
metrics:
- accuracy
- matthews_correlation
model-index:
- name: distilbert-base-imdb
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-imdb

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co./distilbert-base-cased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3490
- Accuracy: 0.9315
- Matthews Correlation: 0.8630

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 320
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------:|
| 0.2597        | 1.0   | 1250 | 0.1997          | 0.921    | 0.8426               |
| 0.165         | 2.0   | 2500 | 0.1839          | 0.9291   | 0.8582               |
| 0.0788        | 3.0   | 3750 | 0.2218          | 0.9308   | 0.8617               |
| 0.0235        | 4.0   | 5000 | 0.3490          | 0.9315   | 0.8630               |
| 0.0123        | 5.0   | 6250 | 0.3721          | 0.9314   | 0.8628               |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0