Initial unit1 model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 255.47 +/- 22.31
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x14546b100>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x14546b1a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x14546b240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x14546b2e0>", "_build": "<function ActorCriticPolicy._build at 0x14546b380>", "forward": "<function ActorCriticPolicy.forward at 0x14546b420>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x14546b4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x14546b560>", "_predict": "<function ActorCriticPolicy._predict at 0x14546b600>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x14546b6a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x14546b740>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x14546b7e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x145470b40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688127453654140000, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPOopL2qiWE+BkwGPkstUL4Pm8Y8yDNMPQAAAAAAAAAAJkqMPdwFHD3RoLq96oA9voR0Pj0F2Pe8AAAAAAAAAABmlkw7uUEWPvtWlD63bQy+3K4gPsAkGj0AAAAAAAAAAMqWVb7fowo/iMT7PDrytL6NPwK+CMHAPQAAAAAAAAAAsLegPsfWOT+lIGI+aSPNvorTpD5Kqci9AAAAAAAAAAAapJi9XKMpunAu4rZuN3qyGIEZOkeNBTYAAIA/AAAAAJqeBT4gvMg+QXwjvXtimb6k4WI8vJICvAAAAAAAAAAAZqw+vbr/Lz6Mo748jnZHvlmQ8bwyY649AAAAAAAAAAANh4s9oBDCP17fuD6uusQ7aAuIvf3Vhb0AAAAAAAAAAM222LxSmNu5ovA3NK2EgS9nvS07cgibswAAgD8AAIA/ADADPDs8gLw3N5W7voUwPGPV3T1+exW9AACAPwAAgD+zrQ+9j25cul0Fx7emt6+yu9TJurol6jYAAIA/AACAPzMzLLxcE1O6KAXvulPX4bUTEWC7eswMOgAAgD8AAIA/TQbJPQSIlT/+aTk+z/0Dv/xuQz16lB0+AAAAAAAAAAAzo8+6SE+JumG6JbQj0n2vcMvGupLjtTMAAIA/AACAP2a4Cz2uqZS6DS6vsxeO36zub4Y6hoKnMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/CkuYhMamMAWyUS/+MAXSUR0B/hI9dNWU9dX2UKGgGR0BwrTImw7koaAdNbgFoCEdAf4YXSjQAuXV9lChoBkdAcemqDsdDIGgHS9FoCEdAf4i6J66as3V9lChoBkdAcxkaEBbOeWgHTUsBaAhHQH+KobCJoCd1fZQoaAZHQHEJSimEXchoB00jAWgIR0B/jR45cTrWdX2UKGgGR0BKePj4pMHsaAdL22gIR0B/jTWBjFyadX2UKGgGR0BwUiXKKYReaAdNAwFoCEdAf5HlU6xPf3V9lChoBkdAcnIK8L8aXWgHTRABaAhHQH+SEMPSUkh1fZQoaAZHQHI85WJaaCtoB0vxaAhHQH+ScZ5zHS51fZQoaAZHQHEDJqM3qA1oB00fAWgIR0B/lKVv/BFedX2UKGgGR0BuHhGrjo6kaAdNDQFoCEdAf5d6Vt4zJ3V9lChoBkdAbYegow22omgHTSIBaAhHQH+Y2HtWuHN1fZQoaAZHQHDNwWac7QtoB00BAWgIR0B/mO1UlzEKdX2UKGgGR0BwxWfDk2gnaAdNGwFoCEdAf5j/zasZHnV9lChoBkdAcGFUT+NtImgHTUwBaAhHQH+aPGQ0XP91fZQoaAZHQDt21fE4vOBoB0vVaAhHQH+dsrAgxJx1fZQoaAZHQHCfZGSZBs1oB00cAWgIR0B/nijHn2ZidX2UKGgGR0Bw8unTAnD0aAdNAAFoCEdAf55Bq9GqgnV9lChoBkdAb4LENOM2nGgHTTsBaAhHQH+mRyjpLVZ1fZQoaAZHQHJRs7hegL9oB00KAWgIR0B/p5nuiN83dX2UKGgGR0BtBOkDZDiPaAdNDQFoCEdAf6ewfyPMjnV9lChoBkdAc2TDIRywOmgHS+ZoCEdAf6pj1f3N93V9lChoBkdAUYwir1dxAGgHS+1oCEdAf6yMKkVN6HV9lChoBkdAc8r5MDfWMGgHTSQBaAhHQH+s/N3W4Ex1fZQoaAZHQFhd2aUiY9hoB03oA2gIR0B/rRxDLKV6dX2UKGgGR0ByaSpgkTpQaAdNRwFoCEdAf62Us4DLbHV9lChoBkdAcYuvWpZOi2gHS/xoCEdAf681y/9Hc3V9lChoBkdAcPHxoIv8ImgHTR4BaAhHQH+wcOXmeUZ1fZQoaAZHQHA/IZl4C6poB01BAWgIR0B/s1NM495hdX2UKGgGR0BsYQctGus+aAdNEAFoCEdAf7SGB4D9wXV9lChoBkdAYHrfP5YYBWgHTa8DaAhHQH+1oXGff411fZQoaAZHQGYUAksz2vloB020AmgIR0B/tfDYRNAUdX2UKGgGR0ByqSqR2bG4aAdNIQFoCEdAf7YpC8e0X3V9lChoBkdAcLK0GNaQm2gHTSgBaAhHQH+2cUEgW8B1fZQoaAZHQHHsaFAVwgloB0vtaAhHQH+4/UrkKeF1fZQoaAZHQHAftsrNGExoB00MAWgIR0B/utMTN+spdX2UKGgGR0BxLh2nsLOSaAdL6GgIR0B/vF72L5ymdX2UKGgGR0BwOd3+uNgjaAdNPAFoCEdAf70FlCkXUHV9lChoBkdAc1UJkXk5qGgHTQcBaAhHQH+95Gz8gp11fZQoaAZHQHF8v779AHFoB00VAWgIR0B/vxOBUaQ4dX2UKGgGR0BvDpCpm29daAdNGgFoCEdAf7/Q/HHWBnV9lChoBkdAcJv3wTdtVWgHS/VoCEdAf7/gZ0jkdXV9lChoBkdAcQ2ElE7W/mgHTUABaAhHQH+//QWvbGp1fZQoaAZHQHMgKQvHtF9oB00NAWgIR0B/wEOlO45MdX2UKGgGR0BI6/GEPDpDaAdLk2gIR0B/wZo+OfdzdX2UKGgGR0BwduPEKmbcaAdNEgFoCEdAf9ADJEH+qHV9lChoBkdAcCcPv8ZUDWgHS/doCEdAf9Bjps41g3V9lChoBkdAcofH/tICl2gHTQkBaAhHQH/RmOQyRCB1fZQoaAZHQHCpYt16mfpoB00IAWgIR0B/0d3Qla8pdX2UKGgGR0BxGqhakhzOaAdNKQFoCEdAf9IBd2PkrHV9lChoBkdAcpow++ueSWgHTSMBaAhHQH/SVTvRZ2Z1fZQoaAZHQHDaiAMDwH9oB0v4aAhHQH/XECFK02N1fZQoaAZHQHMmTMvAXVNoB000AWgIR0B/2NU+9rXUdX2UKGgGR0Bw9mjafzz3aAdNIQFoCEdAf9kuwosqa3V9lChoBkdAcQZamoBJZmgHS/hoCEdAf9ldrO7g9HV9lChoBkdAcnmBmf5DZ2gHTSMBaAhHQH/a17Uoa1l1fZQoaAZHQHBuXxz7uUloB0v6aAhHQH/cqrzXjEN1fZQoaAZHQHKSS4e9zwNoB00oAWgIR0B/3YBcRlH0dX2UKGgGR0Bx0yOgg5imaAdNLQFoCEdAf948V58jRnV9lChoBkdAcoAK8+Roy2gHTU8BaAhHQH/f6+SKWLR1fZQoaAZHQG8NLdWQwK1oB00XAWgIR0B/4JhZyMkydX2UKGgGR0Bxu0flp48maAdNFAFoCEdAf+DY5ksjFHV9lChoBkdAcih4qwyIpGgHS/9oCEdAf+D0Bfa6BnV9lChoBkdAcvva9K28ZmgHS/FoCEdAf+EPX05EMXV9lChoBkdAcwPU6gdwN2gHTR4BaAhHQH/i1VPva111fZQoaAZHQHADaJAMUh5oB005AWgIR0B/5BccENe/dX2UKGgGR0BxWmjrRjSYaAdNvQFoCEdAf+XCg9Net3V9lChoBkdAchOGnXNC7mgHS/loCEdAf+gI065oXnV9lChoBkdAb7THNHH3lGgHTQkBaAhHQH/oilrM1TB1fZQoaAZHQG7iVFpfx+doB00KAWgIR0B/6ON2ki2VdX2UKGgGR0BvpBcC5mROaAdNAwFoCEdAf+oG/N7jUHV9lChoBkdAbV7XrdFfA2gHTT0BaAhHQH/qCZWq95B1fZQoaAZHQHKWscU/OdJoB00OAWgIR0B/7BVNpM6BdX2UKGgGR0BwCgZuQ6p6aAdNGwFoCEdAf+2b2lEZznV9lChoBkdAcjkPjGT9sWgHS/ZoCEdAf+6Jj2BatHV9lChoBkdAcLVL26ClJ2gHTTMBaAhHQH/vx8pkPMB1fZQoaAZHQHDK61LJ0XBoB00QAWgIR0B/8AGiYb84dX2UKGgGR0By1SgqVhTgaAdNRAFoCEdAf/LJsO5J9XV9lChoBkdAcOLaiblRxmgHTR4BaAhHQH/zN5le4Td1fZQoaAZHQHIH1SGahHtoB01YAWgIR0B/82XIEKVqdX2UKGgGR0ByXEwSJ0nxaAdNSAFoCEdAf/OAzHjp93V9lChoBkdAcbcuaF23a2gHTRYBaAhHQH/0BaHKwIN1fZQoaAZHQE17Sa3I+4doB0vUaAhHQH/0POt4iX91fZQoaAZHQHD23Lmp2lloB009AWgIR0B/99ESdvsJdX2UKGgGR0BwabJ/5LyuaAdNFQFoCEdAf/g/dqL0jHV9lChoBkdAb7YW3Sa3JGgHTRsBaAhHQH/47IT4+KV1fZQoaAZHQHB2GRigCfZoB00XAWgIR0B/+crRSgoPdX2UKGgGR0BvBLCJoCdSaAdNGQFoCEdAf/nkq+ajOHV9lChoBkdAcRdon8baRWgHS+toCEdAf/t3bVSXMXV9lChoBkdAbXNJ0W/JvGgHTRUBaAhHQH/7k5p8F6l1fZQoaAZHQHFh0N8VpK1oB00AAWgIR0B/+8P+XJHRdX2UKGgGR0BzjKBtk4FSaAdNCgFoCEdAf/4ny/bj+HV9lChoBkdAb51elbeMymgHS/9oCEdAgAA5aNdZ73V9lChoBkdAcfdhYNiH7GgHTTUBaAhHQIAATDXOGCZ1fZQoaAZHQHKMu4LCvX9oB0v5aAhHQIAAwOtnwod1fZQoaAZHQHBxcB2fTThoB00cAWgIR0CAAXRoAXEZdX2UKGgGR0BweK63AmAtaAdNNwFoCEdAgAI89fTkQ3V9lChoBkdAcpAn5BTn72gHTT8BaAhHQIADLO5avA51fZQoaAZHQHMYoWDYh+xoB0vjaAhHQIADi2Dxsl91fZQoaAZHQHFjhjBl+VloB00mAWgIR0CABIhysCDFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVWgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIwvVXNlcnMvZGFuZXN1bW1lcnMvTGlicmFyeS9DYWNoZXMvcHlwb2V0cnkvdmlydHVhbGVudnMvdW5pdC0xLTNQTEhjZUJLLXB5My4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuDQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIwvVXNlcnMvZGFuZXN1bW1lcnMvTGlicmFyeS9DYWNoZXMvcHlwb2V0cnkvdmlydHVhbGVudnMvdW5pdC0xLTNQTEhjZUJLLXB5My4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UaA6MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVWgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIwvVXNlcnMvZGFuZXN1bW1lcnMvTGlicmFyeS9DYWNoZXMvcHlwb2V0cnkvdmlydHVhbGVudnMvdW5pdC0xLTNQTEhjZUJLLXB5My4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuDQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIwvVXNlcnMvZGFuZXN1bW1lcnMvTGlicmFyeS9DYWNoZXMvcHlwb2V0cnkvdmlydHVhbGVudnMvdW5pdC0xLTNQTEhjZUJLLXB5My4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UaA6MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "macOS-13.4.1-arm64-arm-64bit Darwin Kernel Version 22.5.0: Thu Jun 8 22:22:20 PDT 2023; root:xnu-8796.121.3~7/RELEASE_ARM64_T6000", "Python": "3.11.3", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1", "GPU Enabled": "False", "Numpy": "1.25.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.23.1"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9720487043199d03a4a16b53ff185a260937a2c90c91466118003e4d9dc7cdf
|
3 |
+
size 146678
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x14546b100>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x14546b1a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x14546b240>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x14546b2e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x14546b380>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x14546b420>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x14546b4c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x14546b560>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x14546b600>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x14546b6a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x14546b740>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x14546b7e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x145470b40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1688127453654140000,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPOopL2qiWE+BkwGPkstUL4Pm8Y8yDNMPQAAAAAAAAAAJkqMPdwFHD3RoLq96oA9voR0Pj0F2Pe8AAAAAAAAAABmlkw7uUEWPvtWlD63bQy+3K4gPsAkGj0AAAAAAAAAAMqWVb7fowo/iMT7PDrytL6NPwK+CMHAPQAAAAAAAAAAsLegPsfWOT+lIGI+aSPNvorTpD5Kqci9AAAAAAAAAAAapJi9XKMpunAu4rZuN3qyGIEZOkeNBTYAAIA/AAAAAJqeBT4gvMg+QXwjvXtimb6k4WI8vJICvAAAAAAAAAAAZqw+vbr/Lz6Mo748jnZHvlmQ8bwyY649AAAAAAAAAAANh4s9oBDCP17fuD6uusQ7aAuIvf3Vhb0AAAAAAAAAAM222LxSmNu5ovA3NK2EgS9nvS07cgibswAAgD8AAIA/ADADPDs8gLw3N5W7voUwPGPV3T1+exW9AACAPwAAgD+zrQ+9j25cul0Fx7emt6+yu9TJurol6jYAAIA/AACAPzMzLLxcE1O6KAXvulPX4bUTEWC7eswMOgAAgD8AAIA/TQbJPQSIlT/+aTk+z/0Dv/xuQz16lB0+AAAAAAAAAAAzo8+6SE+JumG6JbQj0n2vcMvGupLjtTMAAIA/AACAP2a4Cz2uqZS6DS6vsxeO36zub4Y6hoKnMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVKwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/CkuYhMamMAWyUS/+MAXSUR0B/hI9dNWU9dX2UKGgGR0BwrTImw7koaAdNbgFoCEdAf4YXSjQAuXV9lChoBkdAcemqDsdDIGgHS9FoCEdAf4i6J66as3V9lChoBkdAcxkaEBbOeWgHTUsBaAhHQH+KobCJoCd1fZQoaAZHQHEJSimEXchoB00jAWgIR0B/jR45cTrWdX2UKGgGR0BKePj4pMHsaAdL22gIR0B/jTWBjFyadX2UKGgGR0BwUiXKKYReaAdNAwFoCEdAf5HlU6xPf3V9lChoBkdAcnIK8L8aXWgHTRABaAhHQH+SEMPSUkh1fZQoaAZHQHI85WJaaCtoB0vxaAhHQH+ScZ5zHS51fZQoaAZHQHEDJqM3qA1oB00fAWgIR0B/lKVv/BFedX2UKGgGR0BuHhGrjo6kaAdNDQFoCEdAf5d6Vt4zJ3V9lChoBkdAbYegow22omgHTSIBaAhHQH+Y2HtWuHN1fZQoaAZHQHDNwWac7QtoB00BAWgIR0B/mO1UlzEKdX2UKGgGR0BwxWfDk2gnaAdNGwFoCEdAf5j/zasZHnV9lChoBkdAcGFUT+NtImgHTUwBaAhHQH+aPGQ0XP91fZQoaAZHQDt21fE4vOBoB0vVaAhHQH+dsrAgxJx1fZQoaAZHQHCfZGSZBs1oB00cAWgIR0B/nijHn2ZidX2UKGgGR0Bw8unTAnD0aAdNAAFoCEdAf55Bq9GqgnV9lChoBkdAb4LENOM2nGgHTTsBaAhHQH+mRyjpLVZ1fZQoaAZHQHJRs7hegL9oB00KAWgIR0B/p5nuiN83dX2UKGgGR0BtBOkDZDiPaAdNDQFoCEdAf6ewfyPMjnV9lChoBkdAc2TDIRywOmgHS+ZoCEdAf6pj1f3N93V9lChoBkdAUYwir1dxAGgHS+1oCEdAf6yMKkVN6HV9lChoBkdAc8r5MDfWMGgHTSQBaAhHQH+s/N3W4Ex1fZQoaAZHQFhd2aUiY9hoB03oA2gIR0B/rRxDLKV6dX2UKGgGR0ByaSpgkTpQaAdNRwFoCEdAf62Us4DLbHV9lChoBkdAcYuvWpZOi2gHS/xoCEdAf681y/9Hc3V9lChoBkdAcPHxoIv8ImgHTR4BaAhHQH+wcOXmeUZ1fZQoaAZHQHA/IZl4C6poB01BAWgIR0B/s1NM495hdX2UKGgGR0BsYQctGus+aAdNEAFoCEdAf7SGB4D9wXV9lChoBkdAYHrfP5YYBWgHTa8DaAhHQH+1oXGff411fZQoaAZHQGYUAksz2vloB020AmgIR0B/tfDYRNAUdX2UKGgGR0ByqSqR2bG4aAdNIQFoCEdAf7YpC8e0X3V9lChoBkdAcLK0GNaQm2gHTSgBaAhHQH+2cUEgW8B1fZQoaAZHQHHsaFAVwgloB0vtaAhHQH+4/UrkKeF1fZQoaAZHQHAftsrNGExoB00MAWgIR0B/utMTN+spdX2UKGgGR0BxLh2nsLOSaAdL6GgIR0B/vF72L5ymdX2UKGgGR0BwOd3+uNgjaAdNPAFoCEdAf70FlCkXUHV9lChoBkdAc1UJkXk5qGgHTQcBaAhHQH+95Gz8gp11fZQoaAZHQHF8v779AHFoB00VAWgIR0B/vxOBUaQ4dX2UKGgGR0BvDpCpm29daAdNGgFoCEdAf7/Q/HHWBnV9lChoBkdAcJv3wTdtVWgHS/VoCEdAf7/gZ0jkdXV9lChoBkdAcQ2ElE7W/mgHTUABaAhHQH+//QWvbGp1fZQoaAZHQHMgKQvHtF9oB00NAWgIR0B/wEOlO45MdX2UKGgGR0BI6/GEPDpDaAdLk2gIR0B/wZo+OfdzdX2UKGgGR0BwduPEKmbcaAdNEgFoCEdAf9ADJEH+qHV9lChoBkdAcCcPv8ZUDWgHS/doCEdAf9Bjps41g3V9lChoBkdAcofH/tICl2gHTQkBaAhHQH/RmOQyRCB1fZQoaAZHQHCpYt16mfpoB00IAWgIR0B/0d3Qla8pdX2UKGgGR0BxGqhakhzOaAdNKQFoCEdAf9IBd2PkrHV9lChoBkdAcpow++ueSWgHTSMBaAhHQH/SVTvRZ2Z1fZQoaAZHQHDaiAMDwH9oB0v4aAhHQH/XECFK02N1fZQoaAZHQHMmTMvAXVNoB000AWgIR0B/2NU+9rXUdX2UKGgGR0Bw9mjafzz3aAdNIQFoCEdAf9kuwosqa3V9lChoBkdAcQZamoBJZmgHS/hoCEdAf9ldrO7g9HV9lChoBkdAcnmBmf5DZ2gHTSMBaAhHQH/a17Uoa1l1fZQoaAZHQHBuXxz7uUloB0v6aAhHQH/cqrzXjEN1fZQoaAZHQHKSS4e9zwNoB00oAWgIR0B/3YBcRlH0dX2UKGgGR0Bx0yOgg5imaAdNLQFoCEdAf948V58jRnV9lChoBkdAcoAK8+Roy2gHTU8BaAhHQH/f6+SKWLR1fZQoaAZHQG8NLdWQwK1oB00XAWgIR0B/4JhZyMkydX2UKGgGR0Bxu0flp48maAdNFAFoCEdAf+DY5ksjFHV9lChoBkdAcih4qwyIpGgHS/9oCEdAf+D0Bfa6BnV9lChoBkdAcvva9K28ZmgHS/FoCEdAf+EPX05EMXV9lChoBkdAcwPU6gdwN2gHTR4BaAhHQH/i1VPva111fZQoaAZHQHADaJAMUh5oB005AWgIR0B/5BccENe/dX2UKGgGR0BxWmjrRjSYaAdNvQFoCEdAf+XCg9Net3V9lChoBkdAchOGnXNC7mgHS/loCEdAf+gI065oXnV9lChoBkdAb7THNHH3lGgHTQkBaAhHQH/oilrM1TB1fZQoaAZHQG7iVFpfx+doB00KAWgIR0B/6ON2ki2VdX2UKGgGR0BvpBcC5mROaAdNAwFoCEdAf+oG/N7jUHV9lChoBkdAbV7XrdFfA2gHTT0BaAhHQH/qCZWq95B1fZQoaAZHQHKWscU/OdJoB00OAWgIR0B/7BVNpM6BdX2UKGgGR0BwCgZuQ6p6aAdNGwFoCEdAf+2b2lEZznV9lChoBkdAcjkPjGT9sWgHS/ZoCEdAf+6Jj2BatHV9lChoBkdAcLVL26ClJ2gHTTMBaAhHQH/vx8pkPMB1fZQoaAZHQHDK61LJ0XBoB00QAWgIR0B/8AGiYb84dX2UKGgGR0By1SgqVhTgaAdNRAFoCEdAf/LJsO5J9XV9lChoBkdAcOLaiblRxmgHTR4BaAhHQH/zN5le4Td1fZQoaAZHQHIH1SGahHtoB01YAWgIR0B/82XIEKVqdX2UKGgGR0ByXEwSJ0nxaAdNSAFoCEdAf/OAzHjp93V9lChoBkdAcbcuaF23a2gHTRYBaAhHQH/0BaHKwIN1fZQoaAZHQE17Sa3I+4doB0vUaAhHQH/0POt4iX91fZQoaAZHQHD23Lmp2lloB009AWgIR0B/99ESdvsJdX2UKGgGR0BwabJ/5LyuaAdNFQFoCEdAf/g/dqL0jHV9lChoBkdAb7YW3Sa3JGgHTRsBaAhHQH/47IT4+KV1fZQoaAZHQHB2GRigCfZoB00XAWgIR0B/+crRSgoPdX2UKGgGR0BvBLCJoCdSaAdNGQFoCEdAf/nkq+ajOHV9lChoBkdAcRdon8baRWgHS+toCEdAf/t3bVSXMXV9lChoBkdAbXNJ0W/JvGgHTRUBaAhHQH/7k5p8F6l1fZQoaAZHQHFh0N8VpK1oB00AAWgIR0B/+8P+XJHRdX2UKGgGR0BzjKBtk4FSaAdNCgFoCEdAf/4ny/bj+HV9lChoBkdAb51elbeMymgHS/9oCEdAgAA5aNdZ73V9lChoBkdAcfdhYNiH7GgHTTUBaAhHQIAATDXOGCZ1fZQoaAZHQHKMu4LCvX9oB0v5aAhHQIAAwOtnwod1fZQoaAZHQHBxcB2fTThoB00cAWgIR0CAAXRoAXEZdX2UKGgGR0BweK63AmAtaAdNNwFoCEdAgAI89fTkQ3V9lChoBkdAcpAn5BTn72gHTT8BaAhHQIADLO5avA51fZQoaAZHQHMYoWDYh+xoB0vjaAhHQIADi2Dxsl91fZQoaAZHQHFjhjBl+VloB00mAWgIR0CABIhysCDFdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"n_steps": 1024,
|
56 |
+
"gamma": 0.999,
|
57 |
+
"gae_lambda": 0.98,
|
58 |
+
"ent_coef": 0.01,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 64,
|
62 |
+
"n_epochs": 4,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWVWgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIwvVXNlcnMvZGFuZXN1bW1lcnMvTGlicmFyeS9DYWNoZXMvcHlwb2V0cnkvdmlydHVhbGVudnMvdW5pdC0xLTNQTEhjZUJLLXB5My4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuDQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIwvVXNlcnMvZGFuZXN1bW1lcnMvTGlicmFyeS9DYWNoZXMvcHlwb2V0cnkvdmlydHVhbGVudnMvdW5pdC0xLTNQTEhjZUJLLXB5My4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UaA6MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
+
"observation_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True True True True True]",
|
75 |
+
"bounded_above": "[ True True True True True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
8
|
78 |
+
],
|
79 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
80 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
81 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
82 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"action_space": {
|
86 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
+
"n": "4",
|
89 |
+
"start": "0",
|
90 |
+
"_shape": [],
|
91 |
+
"dtype": "int64",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 16,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVWgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIwvVXNlcnMvZGFuZXN1bW1lcnMvTGlicmFyeS9DYWNoZXMvcHlwb2V0cnkvdmlydHVhbGVudnMvdW5pdC0xLTNQTEhjZUJLLXB5My4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuDQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIwvVXNlcnMvZGFuZXN1bW1lcnMvTGlicmFyeS9DYWNoZXMvcHlwb2V0cnkvdmlydHVhbGVudnMvdW5pdC0xLTNQTEhjZUJLLXB5My4xMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UaA6MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:595288b529b29bfc59f5fe2f9eea8fb21fa5448b865fcb4723c31f59937592ec
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e268ee1050e5e1f957444802d02ce04d0a021360d376b684358f3bf5f744735d
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: macOS-13.4.1-arm64-arm-64bit Darwin Kernel Version 22.5.0: Thu Jun 8 22:22:20 PDT 2023; root:xnu-8796.121.3~7/RELEASE_ARM64_T6000
|
2 |
+
- Python: 3.11.3
|
3 |
+
- Stable-Baselines3: 2.0.0
|
4 |
+
- PyTorch: 2.0.1
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.25.0
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.23.1
|
replay.mp4
ADDED
Binary file (178 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 255.4705266, "std_reward": 22.313507713662847, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-30T13:56:10.630041"}
|