--- library_name: peft base_model: unsloth/gemma-2b-bnb-4bit --- ``` from unsloth.chat_templates import get_chat_template tokenizer = get_chat_template( tokenizer, chat_template = "chatml", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth mapping = {"role" : "role", "content" : "content", "user" : "user", "assistant" : "assistant","system":"system"}, # ShareGPT style map_eos_token = True, # Maps <|im_end|> to instead ) def ask(text): chat1 = [ [ {"role": "system", "content": "[Role:Translator] [Language:English]"}, {"role": "user", "content": text}, ], [ {"role": "system", "content": "[Role:Translator] [Language:Thai]"}, {"role": "user", "content": text}, ], [ {"role": "system", "content": "[Role:Assistant] [Language:English]"}, {"role": "user", "content": text}, ], [ {"role": "system", "content": "[Role:Assistant] [Language:Thai]"}, {"role": "user", "content": text}, ] ] input_ids = tokenizer.apply_chat_template(chat1, add_generation_prompt=True, tokenize = True, return_tensors = "pt").to("cuda") outputs = model.generate(input_ids = input_ids, max_new_tokens = 64, use_cache = True) decoded = tokenizer.batch_decode(outputs[:, input_ids.shape[1]:],skip_special_tokens=True) print("=========================[Role:Translator] [Language:English]=========================") print(decoded[0]) print("=========================[Role:Translator] [Language:Thai]=========================") print(decoded[1]) print("=========================[Role:Assistant] [Language:English]=========================") print(decoded[2]) print("=========================[Role:Assistant] [Language:Thai]=========================") print(decoded[3]) ```