File size: 9,470 Bytes
774258b 054b782 774258b 7307b6e 5d3a54a 131df81 e5d273d c1c9a0e 5cb0ab3 81e2736 586e0db 0c81e70 2681f61 3e4b798 465da56 0563229 c37918e fd269a4 58e555c 54c0016 4661b8a 46106ce c9cdad3 41b71e4 c600ea8 3ee53c2 dc87674 d3d71c9 aa0d827 0c1dd8f 448b850 b0cd3c6 f300909 c115ef3 b1424c9 30d8396 2276888 8fd18de 722a80b f20dd53 fc631da 81f1d25 2942078 70c0472 1649ea0 3765098 5f0964a 3afaae8 3708377 6d104d9 c5214ce 7eab052 18f8e4d cbbcac8 2ed34f0 127939a 93b8523 48b6338 2bee3f5 028139e 5828c95 34a9346 c6e65c1 69e3a11 402eb35 172a318 ac57a2b f94312d bbfeda0 4718b3f 94170d2 14a1dd8 33665c3 0d24cbf d669180 6c79c2e 49b348a 146c387 be65e8c d2b2d18 48addd9 38a3044 04e286d c534e7d bfd03e6 503c9dd 266dc78 17fffa7 7a5e46f 662ba84 e6abbde f38c14a fb9df87 0df303f b7bd8cf 5bba782 cc5c861 bb01bd1 8b57c57 2b3a6c6 da961de 461cddc 2e4d106 1fb83bb 9738fd0 3e761eb 5647fe7 0d0c539 f42396c 28137ba 9b8f072 e82443c 0fdc3aa a42a20d dc9ed08 ba11f10 fb5ed14 f4ec884 5a227d1 57041ed 11641c6 58ef8f0 c997c55 9f226d1 8e62c69 beec434 fc1b9eb ae1ec99 e385cc8 c1814b7 cc98be4 2b38b7f 21d43f5 5356e69 c232bd7 f32d67e f2addf1 d0ccbc0 e28a440 ffbfc8f 7dd5f25 7e50492 606613c c01eb38 f053908 0976c41 1f55eb4 2ee432c 5194de3 dd2afdd ab80d4d efd5e4c 7bc56fa 55fb87c 646b39e 60b6734 84c7a2b dea465b 449e063 bc6263d 1552e34 649b412 5414c09 cf9b9bd 722cf35 e267b94 8851859 08b7cc9 f72e828 3a82aaf 9e98fe5 4bccc5d 03c1ce9 2110a5e 97154c5 5a986d4 9998db9 a7caee9 bbb9501 da241cc 6363e85 635edbf e83a726 ea0556a 2e7a683 91a11eb 0c16d19 57bfed6 b271088 b6d7101 d2b14b1 0a8b77b d0a0402 b1bcee3 fa6d2e2 42ecfcb fb421df b18ade7 8f7e1b7 de0c69e 1b8e579 3da3174 054b782 774258b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_keras_callback
model-index:
- name: pijarcandra22/t5Indo2Jawa
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# pijarcandra22/t5Indo2Jawa
This model is a fine-tuned version of [t5-small](https://huggingface.co./t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.3740
- Validation Loss: 1.4176
- Epoch: 199
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.5149 | 3.1567 | 0 |
| 3.3816 | 3.0397 | 1 |
| 3.2812 | 2.9518 | 2 |
| 3.1977 | 2.8751 | 3 |
| 3.1223 | 2.8078 | 4 |
| 3.0599 | 2.7507 | 5 |
| 3.0019 | 2.6979 | 6 |
| 2.9517 | 2.6513 | 7 |
| 2.9034 | 2.6121 | 8 |
| 2.8638 | 2.5756 | 9 |
| 2.8232 | 2.5391 | 10 |
| 2.7856 | 2.5089 | 11 |
| 2.7541 | 2.4786 | 12 |
| 2.7219 | 2.4499 | 13 |
| 2.6935 | 2.4256 | 14 |
| 2.6658 | 2.4010 | 15 |
| 2.6389 | 2.3762 | 16 |
| 2.6143 | 2.3550 | 17 |
| 2.5899 | 2.3313 | 18 |
| 2.5665 | 2.3156 | 19 |
| 2.5445 | 2.2939 | 20 |
| 2.5224 | 2.2750 | 21 |
| 2.5022 | 2.2569 | 22 |
| 2.4834 | 2.2410 | 23 |
| 2.4641 | 2.2220 | 24 |
| 2.4443 | 2.2091 | 25 |
| 2.4267 | 2.1948 | 26 |
| 2.4129 | 2.1796 | 27 |
| 2.3937 | 2.1657 | 28 |
| 2.3782 | 2.1523 | 29 |
| 2.3616 | 2.1385 | 30 |
| 2.3471 | 2.1267 | 31 |
| 2.3351 | 2.1110 | 32 |
| 2.3184 | 2.0988 | 33 |
| 2.3047 | 2.0871 | 34 |
| 2.2920 | 2.0768 | 35 |
| 2.2767 | 2.0649 | 36 |
| 2.2651 | 2.0546 | 37 |
| 2.2526 | 2.0445 | 38 |
| 2.2388 | 2.0333 | 39 |
| 2.2264 | 2.0234 | 40 |
| 2.2157 | 2.0165 | 41 |
| 2.2050 | 2.0049 | 42 |
| 2.1906 | 1.9946 | 43 |
| 2.1824 | 1.9845 | 44 |
| 2.1673 | 1.9762 | 45 |
| 2.1559 | 1.9679 | 46 |
| 2.1455 | 1.9608 | 47 |
| 2.1377 | 1.9528 | 48 |
| 2.1279 | 1.9429 | 49 |
| 2.1176 | 1.9356 | 50 |
| 2.1056 | 1.9267 | 51 |
| 2.0979 | 1.9174 | 52 |
| 2.0882 | 1.9087 | 53 |
| 2.0802 | 1.8995 | 54 |
| 2.0668 | 1.8947 | 55 |
| 2.0597 | 1.8880 | 56 |
| 2.0484 | 1.8779 | 57 |
| 2.0405 | 1.8735 | 58 |
| 2.0335 | 1.8676 | 59 |
| 2.0254 | 1.8603 | 60 |
| 2.0147 | 1.8530 | 61 |
| 2.0078 | 1.8459 | 62 |
| 1.9984 | 1.8403 | 63 |
| 1.9902 | 1.8338 | 64 |
| 1.9824 | 1.8264 | 65 |
| 1.9768 | 1.8231 | 66 |
| 1.9679 | 1.8158 | 67 |
| 1.9597 | 1.8104 | 68 |
| 1.9531 | 1.8026 | 69 |
| 1.9460 | 1.7987 | 70 |
| 1.9416 | 1.7929 | 71 |
| 1.9291 | 1.7876 | 72 |
| 1.9245 | 1.7807 | 73 |
| 1.9143 | 1.7788 | 74 |
| 1.9088 | 1.7717 | 75 |
| 1.9006 | 1.7643 | 76 |
| 1.8960 | 1.7587 | 77 |
| 1.8901 | 1.7528 | 78 |
| 1.8808 | 1.7477 | 79 |
| 1.8740 | 1.7436 | 80 |
| 1.8689 | 1.7376 | 81 |
| 1.8628 | 1.7320 | 82 |
| 1.8533 | 1.7312 | 83 |
| 1.8486 | 1.7240 | 84 |
| 1.8428 | 1.7186 | 85 |
| 1.8351 | 1.7141 | 86 |
| 1.8316 | 1.7106 | 87 |
| 1.8234 | 1.7045 | 88 |
| 1.8173 | 1.6976 | 89 |
| 1.8109 | 1.6959 | 90 |
| 1.8059 | 1.6924 | 91 |
| 1.8016 | 1.6860 | 92 |
| 1.7922 | 1.6802 | 93 |
| 1.7887 | 1.6778 | 94 |
| 1.7832 | 1.6716 | 95 |
| 1.7761 | 1.6688 | 96 |
| 1.7724 | 1.6653 | 97 |
| 1.7662 | 1.6582 | 98 |
| 1.7607 | 1.6571 | 99 |
| 1.7549 | 1.6542 | 100 |
| 1.7483 | 1.6497 | 101 |
| 1.7454 | 1.6435 | 102 |
| 1.7400 | 1.6407 | 103 |
| 1.7318 | 1.6363 | 104 |
| 1.7266 | 1.6327 | 105 |
| 1.7234 | 1.6286 | 106 |
| 1.7210 | 1.6267 | 107 |
| 1.7109 | 1.6207 | 108 |
| 1.7079 | 1.6183 | 109 |
| 1.7026 | 1.6162 | 110 |
| 1.6989 | 1.6137 | 111 |
| 1.6925 | 1.6074 | 112 |
| 1.6880 | 1.6051 | 113 |
| 1.6823 | 1.6021 | 114 |
| 1.6780 | 1.5969 | 115 |
| 1.6737 | 1.5960 | 116 |
| 1.6659 | 1.5937 | 117 |
| 1.6603 | 1.5872 | 118 |
| 1.6586 | 1.5870 | 119 |
| 1.6550 | 1.5813 | 120 |
| 1.6506 | 1.5788 | 121 |
| 1.6432 | 1.5771 | 122 |
| 1.6408 | 1.5721 | 123 |
| 1.6377 | 1.5729 | 124 |
| 1.6307 | 1.5693 | 125 |
| 1.6268 | 1.5650 | 126 |
| 1.6227 | 1.5607 | 127 |
| 1.6180 | 1.5618 | 128 |
| 1.6151 | 1.5590 | 129 |
| 1.6101 | 1.5534 | 130 |
| 1.6056 | 1.5505 | 131 |
| 1.6034 | 1.5470 | 132 |
| 1.5971 | 1.5443 | 133 |
| 1.5926 | 1.5431 | 134 |
| 1.5873 | 1.5421 | 135 |
| 1.5850 | 1.5378 | 136 |
| 1.5807 | 1.5334 | 137 |
| 1.5771 | 1.5335 | 138 |
| 1.5734 | 1.5309 | 139 |
| 1.5694 | 1.5288 | 140 |
| 1.5642 | 1.5273 | 141 |
| 1.5610 | 1.5215 | 142 |
| 1.5568 | 1.5217 | 143 |
| 1.5555 | 1.5171 | 144 |
| 1.5517 | 1.5170 | 145 |
| 1.5471 | 1.5148 | 146 |
| 1.5426 | 1.5120 | 147 |
| 1.5376 | 1.5102 | 148 |
| 1.5370 | 1.5081 | 149 |
| 1.5317 | 1.5070 | 150 |
| 1.5272 | 1.5029 | 151 |
| 1.5257 | 1.5025 | 152 |
| 1.5205 | 1.4997 | 153 |
| 1.5180 | 1.4954 | 154 |
| 1.5112 | 1.4932 | 155 |
| 1.5117 | 1.4920 | 156 |
| 1.5070 | 1.4890 | 157 |
| 1.5050 | 1.4881 | 158 |
| 1.4984 | 1.4870 | 159 |
| 1.4964 | 1.4843 | 160 |
| 1.4920 | 1.4833 | 161 |
| 1.4879 | 1.4808 | 162 |
| 1.4838 | 1.4768 | 163 |
| 1.4854 | 1.4756 | 164 |
| 1.4784 | 1.4733 | 165 |
| 1.4757 | 1.4724 | 166 |
| 1.4733 | 1.4697 | 167 |
| 1.4704 | 1.4678 | 168 |
| 1.4660 | 1.4648 | 169 |
| 1.4618 | 1.4660 | 170 |
| 1.4591 | 1.4606 | 171 |
| 1.4554 | 1.4626 | 172 |
| 1.4533 | 1.4595 | 173 |
| 1.4492 | 1.4583 | 174 |
| 1.4471 | 1.4539 | 175 |
| 1.4410 | 1.4548 | 176 |
| 1.4387 | 1.4507 | 177 |
| 1.4370 | 1.4484 | 178 |
| 1.4336 | 1.4482 | 179 |
| 1.4301 | 1.4468 | 180 |
| 1.4300 | 1.4441 | 181 |
| 1.4246 | 1.4429 | 182 |
| 1.4221 | 1.4440 | 183 |
| 1.4171 | 1.4418 | 184 |
| 1.4150 | 1.4359 | 185 |
| 1.4131 | 1.4377 | 186 |
| 1.4110 | 1.4358 | 187 |
| 1.4081 | 1.4321 | 188 |
| 1.4025 | 1.4333 | 189 |
| 1.4010 | 1.4293 | 190 |
| 1.3966 | 1.4288 | 191 |
| 1.3949 | 1.4293 | 192 |
| 1.3921 | 1.4252 | 193 |
| 1.3914 | 1.4253 | 194 |
| 1.3866 | 1.4240 | 195 |
| 1.3832 | 1.4208 | 196 |
| 1.3818 | 1.4221 | 197 |
| 1.3765 | 1.4185 | 198 |
| 1.3740 | 1.4176 | 199 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.14.0
- Datasets 2.15.0
- Tokenizers 0.15.0
|