File size: 2,782 Bytes
e411b3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffdde10
 
 
e411b3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e000cf
e411b3c
 
 
 
 
 
8e000cf
2fe792d
43476d8
2abfce7
7cea751
a93fde4
2783043
819ef5c
0967714
3df7b44
855a894
ebd75fc
d3dd02e
e9aa8fe
0724760
6419636
e8b534f
f421140
b764cf3
4e3ca64
5eef79e
3ebf765
2f3da22
ca1bbd2
05bdf71
274ccba
4b86174
1d4ed1d
29e9a8f
38ed845
d970485
3b9f70d
92c95fe
afa299a
3d5295f
ffdde10
e411b3c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_keras_callback
model-index:
- name: pijarcandra22/NMTBaliIndoBART
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# pijarcandra22/NMTBaliIndoBART

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 5.4574
- Validation Loss: 5.9696
- Epoch: 35

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.02, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 9.3368     | 5.6757          | 0     |
| 5.5627     | 5.5987          | 1     |
| 5.5311     | 5.5419          | 2     |
| 5.5152     | 5.5201          | 3     |
| 5.5005     | 5.6477          | 4     |
| 5.4704     | 5.5914          | 5     |
| 5.4610     | 6.0922          | 6     |
| 5.4584     | 5.7137          | 7     |
| 5.4528     | 5.8658          | 8     |
| 5.4820     | 5.5628          | 9     |
| 5.4874     | 5.5309          | 10    |
| 5.4917     | 5.7595          | 11    |
| 5.4898     | 5.7333          | 12    |
| 5.4833     | 5.6789          | 13    |
| 5.4767     | 5.9588          | 14    |
| 5.4883     | 5.9895          | 15    |
| 5.4694     | 6.0100          | 16    |
| 5.4663     | 6.0316          | 17    |
| 5.4602     | 5.9233          | 18    |
| 5.4576     | 6.0051          | 19    |
| 5.4559     | 5.9966          | 20    |
| 5.4651     | 6.0025          | 21    |
| 5.4660     | 6.0160          | 22    |
| 5.4626     | 5.8324          | 23    |
| 5.4647     | 5.8383          | 24    |
| 5.4695     | 6.0272          | 25    |
| 5.4614     | 6.0724          | 26    |
| 5.4623     | 5.9454          | 27    |
| 5.4678     | 6.0196          | 28    |
| 5.4860     | 5.5949          | 29    |
| 5.4851     | 5.8838          | 30    |
| 5.4666     | 5.8506          | 31    |
| 5.4715     | 6.0391          | 32    |
| 5.4630     | 6.0870          | 33    |
| 5.4646     | 6.2195          | 34    |
| 5.4574     | 5.9696          | 35    |


### Framework versions

- Transformers 4.40.2
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1