File size: 2,003 Bytes
e411b3c e8b534f e411b3c 8e000cf e411b3c 8e000cf 2fe792d 43476d8 2abfce7 7cea751 a93fde4 2783043 819ef5c 0967714 3df7b44 855a894 ebd75fc d3dd02e e9aa8fe 0724760 6419636 e8b534f e411b3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_keras_callback
model-index:
- name: pijarcandra22/NMTBaliIndoBART
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# pijarcandra22/NMTBaliIndoBART
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 5.4694
- Validation Loss: 6.0100
- Epoch: 16
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.02, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 9.3368 | 5.6757 | 0 |
| 5.5627 | 5.5987 | 1 |
| 5.5311 | 5.5419 | 2 |
| 5.5152 | 5.5201 | 3 |
| 5.5005 | 5.6477 | 4 |
| 5.4704 | 5.5914 | 5 |
| 5.4610 | 6.0922 | 6 |
| 5.4584 | 5.7137 | 7 |
| 5.4528 | 5.8658 | 8 |
| 5.4820 | 5.5628 | 9 |
| 5.4874 | 5.5309 | 10 |
| 5.4917 | 5.7595 | 11 |
| 5.4898 | 5.7333 | 12 |
| 5.4833 | 5.6789 | 13 |
| 5.4767 | 5.9588 | 14 |
| 5.4883 | 5.9895 | 15 |
| 5.4694 | 6.0100 | 16 |
### Framework versions
- Transformers 4.40.2
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|