File size: 2,618 Bytes
e411b3c 3b9f70d e411b3c 8e000cf e411b3c 8e000cf 2fe792d 43476d8 2abfce7 7cea751 a93fde4 2783043 819ef5c 0967714 3df7b44 855a894 ebd75fc d3dd02e e9aa8fe 0724760 6419636 e8b534f f421140 b764cf3 4e3ca64 5eef79e 3ebf765 2f3da22 ca1bbd2 05bdf71 274ccba 4b86174 1d4ed1d 29e9a8f 38ed845 d970485 3b9f70d e411b3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_keras_callback
model-index:
- name: pijarcandra22/NMTBaliIndoBART
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# pijarcandra22/NMTBaliIndoBART
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 5.4666
- Validation Loss: 5.8506
- Epoch: 31
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.02, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 9.3368 | 5.6757 | 0 |
| 5.5627 | 5.5987 | 1 |
| 5.5311 | 5.5419 | 2 |
| 5.5152 | 5.5201 | 3 |
| 5.5005 | 5.6477 | 4 |
| 5.4704 | 5.5914 | 5 |
| 5.4610 | 6.0922 | 6 |
| 5.4584 | 5.7137 | 7 |
| 5.4528 | 5.8658 | 8 |
| 5.4820 | 5.5628 | 9 |
| 5.4874 | 5.5309 | 10 |
| 5.4917 | 5.7595 | 11 |
| 5.4898 | 5.7333 | 12 |
| 5.4833 | 5.6789 | 13 |
| 5.4767 | 5.9588 | 14 |
| 5.4883 | 5.9895 | 15 |
| 5.4694 | 6.0100 | 16 |
| 5.4663 | 6.0316 | 17 |
| 5.4602 | 5.9233 | 18 |
| 5.4576 | 6.0051 | 19 |
| 5.4559 | 5.9966 | 20 |
| 5.4651 | 6.0025 | 21 |
| 5.4660 | 6.0160 | 22 |
| 5.4626 | 5.8324 | 23 |
| 5.4647 | 5.8383 | 24 |
| 5.4695 | 6.0272 | 25 |
| 5.4614 | 6.0724 | 26 |
| 5.4623 | 5.9454 | 27 |
| 5.4678 | 6.0196 | 28 |
| 5.4860 | 5.5949 | 29 |
| 5.4851 | 5.8838 | 30 |
| 5.4666 | 5.8506 | 31 |
### Framework versions
- Transformers 4.40.2
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|