File size: 5,403 Bytes
eb0cef4 67f508f eb0cef4 31f9c23 bc83b35 679605a c9a1a67 1a34193 6b5b79b 81cc82a a11ecdd d5963e1 6fc0d94 09612b5 c9d199b fcbabc1 623a994 8fcbb3b 1caf59a e2ed2b7 23f69cd eff2d22 c29d45c 5486fb3 8ec7523 a6f1c7f 4b2af24 c1d301e 57a7b4a 61be133 4f25031 861ec86 45be8a2 bd410b3 add138f 46b754c f9ba776 caa4234 cafa796 0e798be e1ac2be bd67ce4 1301e3c 2ba827d 6b1fcd0 482fccc 14fc504 e72aec5 9e94794 f6ff8e3 4b76ac2 67f508f eb0cef4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_keras_callback
model-index:
- name: pijarcandra22/BartIndo2Bali
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# pijarcandra22/BartIndo2Bali
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1151
- Validation Loss: 2.6202
- Epoch: 99
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 4.3767 | 3.6194 | 0 |
| 3.5364 | 3.1996 | 1 |
| 3.1525 | 2.9458 | 2 |
| 2.8777 | 2.8118 | 3 |
| 2.6993 | 2.6979 | 4 |
| 2.5550 | 2.6071 | 5 |
| 2.4536 | 2.5362 | 6 |
| 2.3338 | 2.4572 | 7 |
| 2.2394 | 2.3878 | 8 |
| 2.1466 | 2.3692 | 9 |
| 2.0795 | 2.3189 | 10 |
| 2.0061 | 2.2674 | 11 |
| 1.9321 | 2.2393 | 12 |
| 1.8837 | 2.2181 | 13 |
| 1.8224 | 2.2002 | 14 |
| 1.7626 | 2.1671 | 15 |
| 1.7251 | 2.1386 | 16 |
| 1.6624 | 2.1245 | 17 |
| 1.6191 | 2.1134 | 18 |
| 1.6177 | 2.1061 | 19 |
| 1.5524 | 2.0845 | 20 |
| 1.4965 | 2.0750 | 21 |
| 1.4618 | 2.0527 | 22 |
| 1.4188 | 2.0584 | 23 |
| 1.3774 | 2.0359 | 24 |
| 1.3469 | 2.0567 | 25 |
| 1.3113 | 2.0295 | 26 |
| 1.2791 | 2.0134 | 27 |
| 1.2436 | 2.0431 | 28 |
| 1.1915 | 2.0201 | 29 |
| 1.1815 | 2.0283 | 30 |
| 1.1314 | 2.0230 | 31 |
| 1.1071 | 2.0424 | 32 |
| 1.0781 | 2.0357 | 33 |
| 1.0429 | 2.0208 | 34 |
| 1.0134 | 2.0458 | 35 |
| 0.9799 | 2.0466 | 36 |
| 0.9567 | 2.0592 | 37 |
| 0.9261 | 2.0278 | 38 |
| 0.8931 | 2.0641 | 39 |
| 0.8742 | 2.0783 | 40 |
| 0.8397 | 2.0781 | 41 |
| 0.8228 | 2.1010 | 42 |
| 0.7819 | 2.1042 | 43 |
| 0.7667 | 2.1302 | 44 |
| 0.7508 | 2.1193 | 45 |
| 0.7136 | 2.1372 | 46 |
| 0.6849 | 2.1513 | 47 |
| 0.6625 | 2.1747 | 48 |
| 0.6451 | 2.1936 | 49 |
| 0.6114 | 2.1650 | 50 |
| 0.5907 | 2.2176 | 51 |
| 0.5781 | 2.2313 | 52 |
| 0.5594 | 2.2287 | 53 |
| 0.5361 | 2.2260 | 54 |
| 0.5168 | 2.2444 | 55 |
| 0.5022 | 2.2660 | 56 |
| 0.4826 | 2.2912 | 57 |
| 0.4607 | 2.2922 | 58 |
| 0.4442 | 2.2912 | 59 |
| 0.4262 | 2.3032 | 60 |
| 0.4050 | 2.3335 | 61 |
| 0.4005 | 2.3327 | 62 |
| 0.3826 | 2.3379 | 63 |
| 0.3658 | 2.3369 | 64 |
| 0.3442 | 2.3629 | 65 |
| 0.3384 | 2.3887 | 66 |
| 0.3287 | 2.3868 | 67 |
| 0.3140 | 2.3609 | 68 |
| 0.3078 | 2.4009 | 69 |
| 0.2953 | 2.4071 | 70 |
| 0.2855 | 2.4421 | 71 |
| 0.2715 | 2.4290 | 72 |
| 0.2647 | 2.4227 | 73 |
| 0.2483 | 2.4457 | 74 |
| 0.2402 | 2.4582 | 75 |
| 0.2355 | 2.4509 | 76 |
| 0.2272 | 2.4788 | 77 |
| 0.2198 | 2.4795 | 78 |
| 0.2077 | 2.4786 | 79 |
| 0.1989 | 2.5080 | 80 |
| 0.1992 | 2.4929 | 81 |
| 0.1905 | 2.5120 | 82 |
| 0.1880 | 2.5345 | 83 |
| 0.1773 | 2.5147 | 84 |
| 0.1734 | 2.5270 | 85 |
| 0.1663 | 2.5399 | 86 |
| 0.1618 | 2.5581 | 87 |
| 0.1576 | 2.5533 | 88 |
| 0.1550 | 2.5177 | 89 |
| 0.1475 | 2.5689 | 90 |
| 0.1453 | 2.5720 | 91 |
| 0.1398 | 2.5526 | 92 |
| 0.1357 | 2.5638 | 93 |
| 0.1325 | 2.5782 | 94 |
| 0.1293 | 2.6026 | 95 |
| 0.1263 | 2.6147 | 96 |
| 0.1257 | 2.6056 | 97 |
| 0.1149 | 2.6323 | 98 |
| 0.1151 | 2.6202 | 99 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.14.0
- Datasets 2.15.0
- Tokenizers 0.15.0
|