File size: 1,669 Bytes
7335431
51c35ba
 
 
 
 
 
33bf050
 
 
 
 
 
 
7335431
51c35ba
 
 
 
 
 
de82cf0
51c35ba
2618c34
 
 
51c35ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2618c34
51c35ba
 
 
 
 
 
 
33bf050
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: TF-Finetuned-xsum
  results: []
datasets:
- xsum
language:
- en
metrics:
- rouge
pipeline_tag: summarization
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# TF-Finetuned-xsum

This model is a fine-tuned version of [t5-small](https://huggingface.co./t5-small) on [xsum](https://huggingface.co./datasets/xsum) dataset.
It achieves the following results on the evaluation set:
- Train Loss: 
- Validation Loss: 
- Epoch: 

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Rougel                                  | Epoch |
|:----------:|:---------------:|:---------------------------------------------:|:-----:|
|            |                 | tf.Tensor(0.1999889, shape=(), dtype=float32) |       |


### Framework versions

- Transformers 4.20.0
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.12.1